Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import AutoTokenizer, AutoModel | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
import fitz # PyMuPDF | |
import os | |
import hashlib | |
# Directory to store cached files | |
CACHE_DIR = "pdf_cache" | |
os.makedirs(CACHE_DIR, exist_ok=True) | |
def get_hf_models(): | |
return ["Qwen/Qwen2.5-3B-Instruct", "HuggingFaceH4/zephyr-7b-beta", "mistralai/Mistral-7B-Instruct-v0.1"] | |
def extract_text_from_pdf(pdf_path): | |
text = "" | |
with fitz.open(pdf_path) as doc: | |
for page in doc: | |
text += page.get_text() | |
return text | |
def manual_rag(query, context, client): | |
prompt = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:" | |
response = client.text_generation(prompt, max_new_tokens=512) | |
return response | |
def classic_rag(query, pdf_path, client, embedder): | |
text = extract_text_from_pdf(pdf_path) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
chunks = text_splitter.split_text(text) | |
embeddings = HuggingFaceEmbeddings(model_name=embedder) | |
db = FAISS.from_texts(chunks, embeddings) | |
docs = db.similarity_search(query, k=3) | |
context = " ".join([doc.page_content for doc in docs]) | |
response = manual_rag(query, context, client) | |
return response, context | |
def no_rag(query, client): | |
response = client.text_generation(query, max_new_tokens=512) | |
return response | |
def cache_file(file): | |
if file is None: | |
return None | |
file_hash = hashlib.md5(file.read()).hexdigest() | |
cached_path = os.path.join(CACHE_DIR, f"{file_hash}.pdf") | |
if not os.path.exists(cached_path): | |
with open(cached_path, "wb") as f: | |
file.seek(0) | |
f.write(file.read()) | |
return cached_path | |
def get_cached_files(): | |
return [f for f in os.listdir(CACHE_DIR) if f.endswith('.pdf')] | |
def process_query(query, pdf_file, cached_file, llm_choice, embedder_choice): | |
client = InferenceClient(llm_choice) | |
no_rag_response = no_rag(query, client) | |
if pdf_file is not None: | |
pdf_path = cache_file(pdf_file) | |
elif cached_file: | |
pdf_path = os.path.join(CACHE_DIR, cached_file) | |
else: | |
return no_rag_response, "RAG non utilisé (pas de fichier PDF)", "RAG non utilisé (pas de fichier PDF)", "Pas de fichier PDF fourni", "Pas de contexte extrait" | |
full_text = extract_text_from_pdf(pdf_path) | |
manual_rag_response = manual_rag(query, full_text, client) | |
classic_rag_response, classic_rag_context = classic_rag(query, pdf_path, client, embedder_choice) | |
return no_rag_response, manual_rag_response, classic_rag_response, full_text, classic_rag_context | |
iface = gr.Interface( | |
fn=process_query, | |
inputs=[ | |
gr.Textbox(label="Votre question"), | |
gr.File(label="Chargez un nouveau PDF"), | |
gr.Dropdown(choices=get_cached_files, label="Ou choisissez un PDF déjà téléversé", interactive=True), | |
gr.Dropdown(choices=get_hf_models(), label="Choisissez le LLM", value="Qwen/Qwen2.5-3B-Instruct"), | |
gr.Dropdown(choices=["sentence-transformers/all-MiniLM-L6-v2", "nomic-ai/nomic-embed-text-v1.5"], | |
label="Choisissez l'Embedder", value="sentence-transformers/all-MiniLM-L6-v2") | |
], | |
outputs=[ | |
gr.Textbox(label="Réponse sans RAG"), | |
gr.Textbox(label="Réponse avec RAG manuel"), | |
gr.Textbox(label="Réponse avec RAG classique"), | |
gr.Textbox(label="Texte complet du PDF (pour RAG manuel)", lines=10), | |
gr.Textbox(label="Contexte extrait (pour RAG classique)", lines=10) | |
], | |
title="Tutoriel RAG - Comparaison des méthodes", | |
description="Posez une question sur le contenu d'un PDF et comparez les réponses obtenues avec différentes méthodes de RAG.", | |
theme="default" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |