jonathanjordan21's picture
Update app.py
20469f9 verified
from fastapi import FastAPI
from langchain_qdrant import QdrantVectorStore
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_qdrant import FastEmbedSparse, QdrantVectorStore, RetrievalMode
from qdrant_client import QdrantClient, models
from qdrant_client.http.models import Distance, SparseVectorParams, VectorParams
from uuid import uuid4
from langchain_core.documents import Document
from typing import Union, List, Dict, Any
from pydantic import BaseModel, Field
class Data(BaseModel):
items: Union[Dict[str, Any], List[Dict[str, Any]]] = Field(..., description="Either a dictionary or a list of dictionaries.")
document_1 = Document(
page_content="I had chocolate chip pancakes and scrambled eggs for breakfast this morning.",
metadata={"source": "tweet"},
)
document_2 = Document(
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees Fahrenheit.",
metadata={"source": "news"},
)
document_3 = Document(
page_content="Building an exciting new project with LangChain - come check it out!",
metadata={"source": "tweet"},
)
document_4 = Document(
page_content="Robbers broke into the city bank and stole $1 million in cash.",
metadata={"source": "news"},
)
document_5 = Document(
page_content="Wow! That was an amazing movie. I can't wait to see it again.",
metadata={"source": "tweet"},
)
document_6 = Document(
page_content="Is the new iPhone worth the price? Read this review to find out.",
metadata={"source": "website"},
)
document_7 = Document(
page_content="The top 10 soccer players in the world right now.",
metadata={"source": "website"},
)
document_8 = Document(
page_content="LangGraph is the best framework for building stateful, agentic applications!",
metadata={"source": "tweet"},
)
document_9 = Document(
page_content="The stock market is down 500 points today due to fears of a recession.",
metadata={"source": "news"},
)
document_10 = Document(
page_content="I have a bad feeling I am going to get deleted :(",
metadata={"source": "tweet"},
)
documents = [
document_1,
document_2,
document_3,
document_4,
document_5,
document_6,
document_7,
document_8,
document_9,
document_10,
]
uuids = [str(uuid4()) for _ in range(len(documents))]
docs = documents
sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
client = QdrantClient(path="tmp/langchain_qdrant")
# Create a collection with sparse vectors
client.create_collection(
collection_name="my_documents",
vectors_config={"dense": VectorParams(size=3072, distance=Distance.COSINE)},
sparse_vectors_config={
"sparse": SparseVectorParams(index=models.SparseIndexParams(on_disk=False))
},
)
qdrant = QdrantVectorStore(
client=client,
collection_name="my_documents",
sparse_embedding=sparse_embeddings,
retrieval_mode=RetrievalMode.SPARSE,
sparse_vector_name="sparse",
)
qdrant.add_documents(documents=documents, ids=uuids)
app = FastAPI()
@app.get("/get_data")
def get_data(query: str):
# query = "How much money did the robbers steal?"
found_docs = [x.model_dump() for x in qdrant.similarity_search(query)]
for doc in found_docs:
doc.pop("id", None)
# key =
for k in list(doc["metadata"].keys()):
if k[0] == "_":
doc["metadata"].pop(k)
return {
"data": found_docs
}
@app.post("/add_data")
def add_data(data: Data):
global qdrant
if isinstance(data.items, dict):
qdrant.add_documents(documents=[Document(**data.items)])
else:
qdrant.add_documents(documents=[Document(**x.items) for x in data])
return {"message":"Create data successfully!", "status_code":201}
@app.get("/")
def greet_json():
return {"Hello": "World!"}