Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from langchain_qdrant import QdrantVectorStore | |
from qdrant_client import QdrantClient | |
from qdrant_client.http.models import Distance, VectorParams | |
from langchain_qdrant import FastEmbedSparse, QdrantVectorStore, RetrievalMode | |
from qdrant_client import QdrantClient, models | |
from qdrant_client.http.models import Distance, SparseVectorParams, VectorParams | |
from uuid import uuid4 | |
from langchain_core.documents import Document | |
from typing import Union, List, Dict, Any | |
from pydantic import BaseModel, Field | |
class Data(BaseModel): | |
items: Union[Dict[str, Any], List[Dict[str, Any]]] = Field(..., description="Either a dictionary or a list of dictionaries.") | |
document_1 = Document( | |
page_content="I had chocolate chip pancakes and scrambled eggs for breakfast this morning.", | |
metadata={"source": "tweet"}, | |
) | |
document_2 = Document( | |
page_content="The weather forecast for tomorrow is cloudy and overcast, with a high of 62 degrees Fahrenheit.", | |
metadata={"source": "news"}, | |
) | |
document_3 = Document( | |
page_content="Building an exciting new project with LangChain - come check it out!", | |
metadata={"source": "tweet"}, | |
) | |
document_4 = Document( | |
page_content="Robbers broke into the city bank and stole $1 million in cash.", | |
metadata={"source": "news"}, | |
) | |
document_5 = Document( | |
page_content="Wow! That was an amazing movie. I can't wait to see it again.", | |
metadata={"source": "tweet"}, | |
) | |
document_6 = Document( | |
page_content="Is the new iPhone worth the price? Read this review to find out.", | |
metadata={"source": "website"}, | |
) | |
document_7 = Document( | |
page_content="The top 10 soccer players in the world right now.", | |
metadata={"source": "website"}, | |
) | |
document_8 = Document( | |
page_content="LangGraph is the best framework for building stateful, agentic applications!", | |
metadata={"source": "tweet"}, | |
) | |
document_9 = Document( | |
page_content="The stock market is down 500 points today due to fears of a recession.", | |
metadata={"source": "news"}, | |
) | |
document_10 = Document( | |
page_content="I have a bad feeling I am going to get deleted :(", | |
metadata={"source": "tweet"}, | |
) | |
documents = [ | |
document_1, | |
document_2, | |
document_3, | |
document_4, | |
document_5, | |
document_6, | |
document_7, | |
document_8, | |
document_9, | |
document_10, | |
] | |
uuids = [str(uuid4()) for _ in range(len(documents))] | |
docs = documents | |
sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25") | |
client = QdrantClient(path="tmp/langchain_qdrant") | |
# Create a collection with sparse vectors | |
client.create_collection( | |
collection_name="my_documents", | |
vectors_config={"dense": VectorParams(size=3072, distance=Distance.COSINE)}, | |
sparse_vectors_config={ | |
"sparse": SparseVectorParams(index=models.SparseIndexParams(on_disk=False)) | |
}, | |
) | |
qdrant = QdrantVectorStore( | |
client=client, | |
collection_name="my_documents", | |
sparse_embedding=sparse_embeddings, | |
retrieval_mode=RetrievalMode.SPARSE, | |
sparse_vector_name="sparse", | |
) | |
qdrant.add_documents(documents=documents, ids=uuids) | |
app = FastAPI() | |
def get_data(query: str): | |
# query = "How much money did the robbers steal?" | |
found_docs = [x.model_dump() for x in qdrant.similarity_search(query)] | |
for doc in found_docs: | |
doc.pop("id", None) | |
# key = | |
for k in list(doc["metadata"].keys()): | |
if k[0] == "_": | |
doc["metadata"].pop(k) | |
return { | |
"data": found_docs | |
} | |
def add_data(data: Data): | |
global qdrant | |
if isinstance(data.items, dict): | |
qdrant.add_documents(documents=[Document(**data.items)]) | |
else: | |
qdrant.add_documents(documents=[Document(**x.items) for x in data]) | |
return {"message":"Create data successfully!", "status_code":201} | |
def greet_json(): | |
return {"Hello": "World!"} | |