segformer / app.py
joshangngoching's picture
Update app.py
d3cdfaa verified
import streamlit as st
from PIL import Image
from transformers import pipeline
import numpy as np
import cv2
import matplotlib.cm as cm
import base64
from io import BytesIO
st.set_page_config(layout="wide")
with open("styles.css") as f:
st.markdown('<style>{}</style>'.format(f.read()), unsafe_allow_html=True)
st.markdown("<h1 class='title'>Segformer Semantic Segmentation</h1>", unsafe_allow_html=True)
st.markdown("""
<div class='text-center'>
This app uses the Segformer deep learning model to perform semantic segmentation on <b style='color: red; font-weight: 40px;'>road images</b>. The Transformer-based model is
trained on the CityScapes dataset which contains images of urban road scenes. Upload a
road scene and the app will return the image with semantic segmentation applied.
</div>
""", unsafe_allow_html=True)
group_members = ["Ang Ngo Ching, Josh Darren W.", "Bautista, Ryan Matthew M.", "Lacuesta, Angelo Giuseppe M.", "Reyes, Kenwin Hans", "Ting, Sidney Mitchell O."]
st.markdown("""
<h3 class='text-center' style='margin-top: 0.5rem;'>
ℹ️ You can get sample images of road scenes in this <a href='https://drive.google.com/drive/folders/1202EMeXAHnN18NuhJKWWme34vg0V-svY?fbclid=IwAR3kyjGS895nOBKi9aGT_P4gLX9jvSNrV5b5y3GH49t2Pvg2sZSRA58LLxs' target='_blank'>link</a>.
</h3>""", unsafe_allow_html=True)
st.markdown("""
<h3 class='text-center' style='margin-top: 0.5rem;'>
📜 Read more about the paper <a href='https://arxiv.org/pdf/2105.15203.pdf' target='_blank'>here</a>.
</h3>""", unsafe_allow_html=True)
label_colors = {}
def draw_masks_fromDict(image, results):
masked_image = image.copy()
colormap = cm.get_cmap('nipy_spectral')
for i, result in enumerate(results):
mask = np.array(result['mask'])
mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
color = colormap(i / len(results))[:3]
color = tuple(int(c * 255) for c in color)
masked_image = np.where(mask, color, masked_image)
label_colors[color] = result['label']
masked_image = masked_image.astype(np.uint8)
return cv2.addWeighted(image, 0.3, masked_image, 0.7, 0)
uploaded_file = st.file_uploader("", type=["jpg", "png"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
col1, col2 = st.columns(2)
with col1:
st.image(image, caption='Uploaded Image.', use_column_width=True)
with st.spinner('Processing...'):
semantic_segmentation = pipeline("image-segmentation", f"nvidia/segformer-b1-finetuned-cityscapes-1024-1024")
segmentation_results = semantic_segmentation(image)
image_with_masks = draw_masks_fromDict(np.array(image)[:, :, :3], segmentation_results)
image_with_masks_pil = Image.fromarray(image_with_masks, 'RGB')
with col2:
st.image(image_with_masks_pil, caption='Segmented Image.', use_column_width=True)
html_segment = "<div class='container'><h3>Labels:</h3>"
for color, label in label_colors.items():
html_segment += f"<div style='display: flex; align-items: center; margin-bottom: 0.5rem;'><span style='display: inline-block; width: 20px; height: 20px; background-color: rgb{color}; margin-right: 1rem; border-radius: 10px;'></span><p style='margin: 0;'>{label}</p></div>"
buffered = BytesIO()
image_with_masks_pil.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode()
html_segment += f'<a href="data:file/png;base64,{img_str}" download="segmented_{uploaded_file.name}">Download Segmented Image</a>'
st.markdown(html_segment + "</div>", unsafe_allow_html=True)
html_members = "<hr><div style='display: flex; justify-content: center;'><h3>Group 6 - Members:</h3><ul>"
for member in group_members:
html_members += "<li>" + member + "</li>"
st.markdown(html_members + "</ul></div>", unsafe_allow_html=True)