|
""" |
|
Enhanced Multi-LLM Agent System - CORRECTED VERSION |
|
Fixes the issue where questions are returned as answers |
|
""" |
|
|
|
import os |
|
import time |
|
import random |
|
import operator |
|
from typing import List, Dict, Any, TypedDict, Annotated |
|
from dotenv import load_dotenv |
|
|
|
from langchain_core.tools import tool |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langgraph.graph import StateGraph, END |
|
from langgraph.checkpoint.memory import MemorySaver |
|
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage |
|
from langchain_groq import ChatGroq |
|
|
|
load_dotenv() |
|
|
|
|
|
ENHANCED_SYSTEM_PROMPT = ( |
|
"You are a helpful assistant tasked with answering questions using available tools. " |
|
"Follow these guidelines:\n" |
|
"1. Read the question carefully and understand what is being asked\n" |
|
"2. Use available tools when you need external information\n" |
|
"3. Provide accurate, specific answers based on the information you find\n" |
|
"4. For numbers: don't use commas or units unless specified\n" |
|
"5. For strings: don't use articles or abbreviations, write digits in plain text\n" |
|
"6. Always end with 'FINAL ANSWER: [YOUR ANSWER]' where [YOUR ANSWER] is concise\n" |
|
"7. Never repeat the question as your answer\n" |
|
"8. If you cannot find the answer, state 'Information not available'\n" |
|
) |
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two integers and return the product.""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two integers and return the sum.""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract the second integer from the first and return the difference.""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
"""Divide the first integer by the second and return the quotient.""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Return the remainder when dividing the first integer by the second.""" |
|
return a % b |
|
|
|
@tool |
|
def optimized_web_search(query: str) -> str: |
|
"""Perform web search using TavilySearchResults.""" |
|
try: |
|
time.sleep(random.uniform(0.7, 1.5)) |
|
search_tool = TavilySearchResults(max_results=3) |
|
docs = search_tool.invoke({"query": query}) |
|
return "\n\n---\n\n".join( |
|
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:800]}</Doc>" |
|
for d in docs |
|
) |
|
except Exception as e: |
|
return f"Web search failed: {e}" |
|
|
|
@tool |
|
def optimized_wiki_search(query: str) -> str: |
|
"""Perform Wikipedia search and return content.""" |
|
try: |
|
time.sleep(random.uniform(0.3, 1)) |
|
docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
return "\n\n---\n\n".join( |
|
f"<Doc src='{d.metadata.get('source','Wikipedia')}'>{d.page_content[:1000]}</Doc>" |
|
for d in docs |
|
) |
|
except Exception as e: |
|
return f"Wikipedia search failed: {e}" |
|
|
|
|
|
class EnhancedAgentState(TypedDict): |
|
"""State structure for the enhanced agent system.""" |
|
messages: Annotated[List[HumanMessage | AIMessage], operator.add] |
|
query: str |
|
agent_type: str |
|
final_answer: str |
|
perf: Dict[str, Any] |
|
agno_resp: str |
|
|
|
|
|
class HybridLangGraphMultiLLMSystem: |
|
"""Enhanced question-answering system with proper response handling.""" |
|
|
|
def __init__(self): |
|
"""Initialize the enhanced multi-LLM system.""" |
|
self.tools = [ |
|
multiply, add, subtract, divide, modulus, |
|
optimized_web_search, optimized_wiki_search |
|
] |
|
self.graph = self._build_graph() |
|
|
|
def _llm(self, model_name: str) -> ChatGroq: |
|
"""Create a Groq LLM instance.""" |
|
return ChatGroq( |
|
model=model_name, |
|
temperature=0, |
|
api_key=os.getenv("GROQ_API_KEY") |
|
) |
|
|
|
def _build_graph(self) -> StateGraph: |
|
"""Build the LangGraph state machine with proper response handling.""" |
|
|
|
llama8_llm = self._llm("llama3-8b-8192") |
|
llama70_llm = self._llm("llama3-70b-8192") |
|
deepseek_llm = self._llm("deepseek-chat") |
|
|
|
def router(st: EnhancedAgentState) -> EnhancedAgentState: |
|
"""Route queries to appropriate LLM based on content analysis.""" |
|
q = st["query"].lower() |
|
|
|
|
|
if any(keyword in q for keyword in ["calculate", "compute", "math", "multiply", "add", "subtract", "divide"]): |
|
t = "llama70" |
|
elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia", "information about"]): |
|
t = "search_enhanced" |
|
elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]): |
|
t = "deepseek" |
|
elif "llama-8" in q: |
|
t = "llama8" |
|
elif len(q.split()) > 20: |
|
t = "llama70" |
|
else: |
|
t = "llama8" |
|
|
|
return {**st, "agent_type": t} |
|
|
|
def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState: |
|
"""Process query with Llama-3 8B model.""" |
|
t0 = time.time() |
|
try: |
|
|
|
enhanced_query = f""" |
|
Question: {st["query"]} |
|
|
|
Please provide a direct, accurate answer to this question. Do not repeat the question. |
|
""" |
|
|
|
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) |
|
res = llama8_llm.invoke([sys, HumanMessage(content=enhanced_query)]) |
|
|
|
|
|
answer = res.content.strip() |
|
if "FINAL ANSWER:" in answer: |
|
answer = answer.split("FINAL ANSWER:")[-1].strip() |
|
|
|
return {**st, |
|
"final_answer": answer, |
|
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}} |
|
except Exception as e: |
|
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} |
|
|
|
def llama70_node(st: EnhancedAgentState) -> EnhancedAgentState: |
|
"""Process query with Llama-3 70B model.""" |
|
t0 = time.time() |
|
try: |
|
|
|
enhanced_query = f""" |
|
Question: {st["query"]} |
|
|
|
Please provide a direct, accurate answer to this question. Do not repeat the question. |
|
""" |
|
|
|
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) |
|
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)]) |
|
|
|
|
|
answer = res.content.strip() |
|
if "FINAL ANSWER:" in answer: |
|
answer = answer.split("FINAL ANSWER:")[-1].strip() |
|
|
|
return {**st, |
|
"final_answer": answer, |
|
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}} |
|
except Exception as e: |
|
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} |
|
|
|
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState: |
|
"""Process query with DeepSeek model.""" |
|
t0 = time.time() |
|
try: |
|
|
|
enhanced_query = f""" |
|
Question: {st["query"]} |
|
|
|
Please provide a direct, accurate answer to this question. Do not repeat the question. |
|
""" |
|
|
|
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) |
|
res = deepseek_llm.invoke([sys, HumanMessage(content=enhanced_query)]) |
|
|
|
|
|
answer = res.content.strip() |
|
if "FINAL ANSWER:" in answer: |
|
answer = answer.split("FINAL ANSWER:")[-1].strip() |
|
|
|
return {**st, |
|
"final_answer": answer, |
|
"perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}} |
|
except Exception as e: |
|
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} |
|
|
|
def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState: |
|
"""Process query with search enhancement.""" |
|
t0 = time.time() |
|
|
|
try: |
|
|
|
query = st["query"] |
|
search_results = "" |
|
|
|
if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]): |
|
search_results = optimized_wiki_search.invoke({"query": query}) |
|
else: |
|
search_results = optimized_web_search.invoke({"query": query}) |
|
|
|
|
|
enhanced_query = f""" |
|
Original Question: {query} |
|
|
|
Search Results: |
|
{search_results} |
|
|
|
Based on the search results above, provide a direct answer to the original question. |
|
Extract the specific information requested. Do not repeat the question. |
|
""" |
|
|
|
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT) |
|
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)]) |
|
|
|
|
|
answer = res.content.strip() |
|
if "FINAL ANSWER:" in answer: |
|
answer = answer.split("FINAL ANSWER:")[-1].strip() |
|
|
|
return {**st, |
|
"final_answer": answer, |
|
"perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}} |
|
except Exception as e: |
|
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}} |
|
|
|
|
|
g = StateGraph(EnhancedAgentState) |
|
g.add_node("router", router) |
|
g.add_node("llama8", llama8_node) |
|
g.add_node("llama70", llama70_node) |
|
g.add_node("deepseek", deepseek_node) |
|
g.add_node("search_enhanced", search_enhanced_node) |
|
|
|
g.set_entry_point("router") |
|
g.add_conditional_edges("router", lambda s: s["agent_type"], { |
|
"llama8": "llama8", |
|
"llama70": "llama70", |
|
"deepseek": "deepseek", |
|
"search_enhanced": "search_enhanced" |
|
}) |
|
|
|
for node in ["llama8", "llama70", "deepseek", "search_enhanced"]: |
|
g.add_edge(node, END) |
|
|
|
return g.compile(checkpointer=MemorySaver()) |
|
|
|
def process_query(self, q: str) -> str: |
|
"""Process a query and return the final answer.""" |
|
state = { |
|
"messages": [HumanMessage(content=q)], |
|
"query": q, |
|
"agent_type": "", |
|
"final_answer": "", |
|
"perf": {}, |
|
"agno_resp": "" |
|
} |
|
cfg = {"configurable": {"thread_id": f"qa_{hash(q)}"}} |
|
|
|
try: |
|
out = self.graph.invoke(state, cfg) |
|
answer = out.get("final_answer", "").strip() |
|
|
|
|
|
if answer == q or answer.startswith(q): |
|
return "Information not available" |
|
|
|
return answer if answer else "No answer generated" |
|
except Exception as e: |
|
return f"Error processing query: {e}" |
|
|
|
def build_graph(provider: str | None = None) -> StateGraph: |
|
"""Build and return the graph for the enhanced agent system.""" |
|
return HybridLangGraphMultiLLMSystem().graph |
|
|
|
if __name__ == "__main__": |
|
|
|
qa_system = HybridLangGraphMultiLLMSystem() |
|
|
|
test_questions = [ |
|
"What is 25 multiplied by 17?", |
|
"Who was the first president of the United States?", |
|
"Find information about artificial intelligence on Wikipedia" |
|
] |
|
|
|
for question in test_questions: |
|
print(f"Question: {question}") |
|
answer = qa_system.process_query(question) |
|
print(f"Answer: {answer}") |
|
print("-" * 50) |
|
|