|
""" |
|
Enhanced LangGraph Agent with Multi-LLM Support and Proper Question Answering |
|
Combines your original LangGraph structure with enhanced response handling |
|
""" |
|
|
|
import os |
|
import time |
|
import random |
|
from dotenv import load_dotenv |
|
from typing import List, Dict, Any, TypedDict, Annotated |
|
import operator |
|
|
|
from langgraph.graph import START, StateGraph, MessagesState, END |
|
from langgraph.prebuilt import tools_condition, ToolNode |
|
from langgraph.checkpoint.memory import MemorySaver |
|
|
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
from supabase.client import Client, create_client |
|
|
|
load_dotenv() |
|
|
|
|
|
ENHANCED_SYSTEM_PROMPT = """You are a helpful assistant tasked with answering questions using a set of tools. |
|
|
|
CRITICAL INSTRUCTIONS: |
|
1. Read the question carefully and understand what specific information is being asked |
|
2. Use the appropriate tools to find the exact information requested |
|
3. For factual questions, search for current and accurate information |
|
4. For calculations, use the math tools provided |
|
5. Always provide specific, direct answers - never repeat the question as your answer |
|
6. If you cannot find the information, state "Information not available" |
|
7. Format your final response as: FINAL ANSWER: [your specific answer] |
|
|
|
ANSWER FORMAT RULES: |
|
- For numbers: provide just the number without commas or units unless specified |
|
- For names/strings: provide the exact name or term without articles |
|
- For lists: provide comma-separated values |
|
- Be concise and specific in your final answer |
|
|
|
Remember: Your job is to ANSWER the question, not repeat it back.""" |
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two numbers. |
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two numbers. |
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract two numbers. |
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
"""Divide two numbers. |
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Get the modulus of two numbers. |
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
Args: |
|
query: The search query. |
|
""" |
|
try: |
|
time.sleep(random.uniform(0.5, 1.0)) |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
if not search_docs: |
|
return "No Wikipedia results found" |
|
|
|
formatted_search_docs = "\n\n---\n\n".join([ |
|
f'<Document source="{doc.metadata.get("source", "Wikipedia")}" title="{doc.metadata.get("title", "")}">\n{doc.page_content[:1500]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return formatted_search_docs |
|
except Exception as e: |
|
return f"Wikipedia search failed: {e}" |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
Args: |
|
query: The search query. |
|
""" |
|
try: |
|
time.sleep(random.uniform(0.7, 1.2)) |
|
search_tool = TavilySearchResults(max_results=3) |
|
search_docs = search_tool.invoke({"query": query}) |
|
if not search_docs: |
|
return "No web search results found" |
|
|
|
formatted_search_docs = "\n\n---\n\n".join([ |
|
f'<Document source="{doc.get("url", "")}">\n{doc.get("content", "")[:1200]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return formatted_search_docs |
|
except Exception as e: |
|
return f"Web search failed: {e}" |
|
|
|
@tool |
|
def arxiv_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 results. |
|
Args: |
|
query: The search query. |
|
""" |
|
try: |
|
time.sleep(random.uniform(0.5, 1.0)) |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
if not search_docs: |
|
return "No ArXiv results found" |
|
|
|
formatted_search_docs = "\n\n---\n\n".join([ |
|
f'<Document source="{doc.metadata.get("source", "ArXiv")}" title="{doc.metadata.get("title", "")}">\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return formatted_search_docs |
|
except Exception as e: |
|
return f"ArXiv search failed: {e}" |
|
|
|
|
|
tools = [ |
|
multiply, add, subtract, divide, modulus, |
|
wiki_search, web_search, arxiv_search |
|
] |
|
|
|
|
|
class EnhancedState(MessagesState): |
|
"""Enhanced state with additional tracking""" |
|
query: str = "" |
|
tools_used: List[str] = [] |
|
search_results: str = "" |
|
|
|
def build_graph(provider: str = "groq"): |
|
"""Build the enhanced graph with proper error handling and response formatting""" |
|
|
|
|
|
if provider == "google": |
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "groq": |
|
llm = ChatGroq(model="llama3-70b-8192", temperature=0) |
|
elif provider == "huggingface": |
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0, |
|
), |
|
) |
|
else: |
|
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") |
|
|
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
vector_store = None |
|
try: |
|
if os.getenv("SUPABASE_URL") and os.getenv("SUPABASE_SERVICE_KEY"): |
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
supabase: Client = create_client( |
|
os.environ.get("SUPABASE_URL"), |
|
os.environ.get("SUPABASE_SERVICE_KEY") |
|
) |
|
vector_store = SupabaseVectorStore( |
|
client=supabase, |
|
embedding=embeddings, |
|
table_name="documents", |
|
query_name="match_documents_langchain", |
|
) |
|
except Exception as e: |
|
print(f"Vector store initialization failed: {e}") |
|
|
|
def retriever(state: MessagesState): |
|
"""Enhanced retriever node with fallback""" |
|
messages = state["messages"] |
|
query = messages[-1].content if messages else "" |
|
|
|
|
|
similar_context = "" |
|
if vector_store: |
|
try: |
|
similar_questions = vector_store.similarity_search(query, k=1) |
|
if similar_questions: |
|
similar_context = f"\n\nSimilar example for reference:\n{similar_questions[0].page_content}" |
|
except Exception as e: |
|
print(f"Vector search failed: {e}") |
|
|
|
|
|
enhanced_prompt = ENHANCED_SYSTEM_PROMPT + similar_context |
|
sys_msg = SystemMessage(content=enhanced_prompt) |
|
|
|
return {"messages": [sys_msg] + messages} |
|
|
|
def assistant(state: MessagesState): |
|
"""Enhanced assistant node with better response handling""" |
|
try: |
|
response = llm_with_tools.invoke(state["messages"]) |
|
|
|
|
|
if hasattr(response, 'content'): |
|
content = response.content |
|
|
|
|
|
original_query = state["messages"][-1].content if state["messages"] else "" |
|
if content.strip() == original_query.strip(): |
|
|
|
enhanced_messages = state["messages"] + [ |
|
HumanMessage(content=f"Please provide a specific answer to this question, do not repeat the question: {original_query}") |
|
] |
|
response = llm_with_tools.invoke(enhanced_messages) |
|
|
|
return {"messages": [response]} |
|
except Exception as e: |
|
error_response = AIMessage(content=f"Error processing request: {e}") |
|
return {"messages": [error_response]} |
|
|
|
def format_final_answer(state: MessagesState): |
|
"""Format the final answer properly""" |
|
messages = state["messages"] |
|
if not messages: |
|
return {"messages": [AIMessage(content="FINAL ANSWER: Information not available")]} |
|
|
|
last_message = messages[-1] |
|
if hasattr(last_message, 'content'): |
|
content = last_message.content |
|
|
|
|
|
if "FINAL ANSWER:" not in content: |
|
|
|
if content.strip(): |
|
formatted_content = f"FINAL ANSWER: {content.strip()}" |
|
else: |
|
formatted_content = "FINAL ANSWER: Information not available" |
|
|
|
formatted_message = AIMessage(content=formatted_content) |
|
return {"messages": messages[:-1] + [formatted_message]} |
|
|
|
return {"messages": messages} |
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
|
|
|
|
builder.add_node("retriever", retriever) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_node("formatter", format_final_answer) |
|
|
|
|
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
{ |
|
"tools": "tools", |
|
"__end__": "formatter" |
|
} |
|
) |
|
builder.add_edge("tools", "assistant") |
|
builder.add_edge("formatter", END) |
|
|
|
|
|
return builder.compile(checkpointer=MemorySaver()) |
|
|
|
|
|
def test_agent(): |
|
"""Test the agent with sample questions""" |
|
graph = build_graph(provider="groq") |
|
|
|
test_questions = [ |
|
"How many studio albums were published by Mercedes Sosa between 2000 and 2009?", |
|
"What is 25 multiplied by 17?", |
|
"Who nominated the only Featured Article on English Wikipedia about a dinosaur that was promoted in November 2004?" |
|
] |
|
|
|
for question in test_questions: |
|
print(f"\nQuestion: {question}") |
|
print("-" * 60) |
|
|
|
try: |
|
messages = [HumanMessage(content=question)] |
|
config = {"configurable": {"thread_id": f"test_{hash(question)}"}} |
|
result = graph.invoke({"messages": messages}, config) |
|
|
|
if result and "messages" in result: |
|
final_message = result["messages"][-1] |
|
if hasattr(final_message, 'content'): |
|
print(f"Answer: {final_message.content}") |
|
else: |
|
print(f"Answer: {final_message}") |
|
else: |
|
print("Answer: No response generated") |
|
except Exception as e: |
|
print(f"Error: {e}") |
|
|
|
print() |
|
|
|
if __name__ == "__main__": |
|
|
|
test_agent() |
|
|