Update veryfinal.py
Browse files- veryfinal.py +269 -256
veryfinal.py
CHANGED
@@ -1,326 +1,339 @@
|
|
1 |
"""
|
2 |
-
Enhanced Multi-LLM
|
3 |
-
|
4 |
"""
|
5 |
|
6 |
import os
|
7 |
import time
|
8 |
import random
|
9 |
-
import operator
|
10 |
-
from typing import List, Dict, Any, TypedDict, Annotated
|
11 |
from dotenv import load_dotenv
|
|
|
|
|
12 |
|
13 |
-
from
|
14 |
-
from
|
15 |
-
from langchain_community.document_loaders import WikipediaLoader
|
16 |
-
from langgraph.graph import StateGraph, END
|
17 |
from langgraph.checkpoint.memory import MemorySaver
|
18 |
-
|
|
|
19 |
from langchain_groq import ChatGroq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
load_dotenv()
|
22 |
|
23 |
-
# Enhanced system prompt for
|
24 |
-
ENHANCED_SYSTEM_PROMPT =
|
25 |
-
"You are a helpful assistant tasked with answering questions using available tools. "
|
26 |
-
"Follow these guidelines:\n"
|
27 |
-
"1. Read the question carefully and understand what is being asked\n"
|
28 |
-
"2. Use available tools when you need external information\n"
|
29 |
-
"3. Provide accurate, specific answers based on the information you find\n"
|
30 |
-
"4. For numbers: don't use commas or units unless specified\n"
|
31 |
-
"5. For strings: don't use articles or abbreviations, write digits in plain text\n"
|
32 |
-
"6. Always end with 'FINAL ANSWER: [YOUR ANSWER]' where [YOUR ANSWER] is concise\n"
|
33 |
-
"7. Never repeat the question as your answer\n"
|
34 |
-
"8. If you cannot find the answer, state 'Information not available'\n"
|
35 |
-
)
|
36 |
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
@tool
|
39 |
def multiply(a: int, b: int) -> int:
|
40 |
-
"""Multiply two
|
|
|
|
|
|
|
|
|
41 |
return a * b
|
42 |
|
43 |
@tool
|
44 |
def add(a: int, b: int) -> int:
|
45 |
-
"""Add two
|
|
|
|
|
|
|
|
|
46 |
return a + b
|
47 |
|
48 |
@tool
|
49 |
def subtract(a: int, b: int) -> int:
|
50 |
-
"""Subtract
|
|
|
|
|
|
|
|
|
51 |
return a - b
|
52 |
|
53 |
@tool
|
54 |
def divide(a: int, b: int) -> float:
|
55 |
-
"""Divide
|
|
|
|
|
|
|
|
|
56 |
if b == 0:
|
57 |
raise ValueError("Cannot divide by zero.")
|
58 |
return a / b
|
59 |
|
60 |
@tool
|
61 |
def modulus(a: int, b: int) -> int:
|
62 |
-
"""
|
|
|
|
|
|
|
|
|
63 |
return a % b
|
64 |
|
65 |
@tool
|
66 |
-
def
|
67 |
-
"""
|
|
|
|
|
|
|
68 |
try:
|
69 |
-
time.sleep(random.uniform(0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
search_tool = TavilySearchResults(max_results=3)
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
except Exception as e:
|
77 |
return f"Web search failed: {e}"
|
78 |
|
79 |
@tool
|
80 |
-
def
|
81 |
-
"""
|
|
|
|
|
|
|
82 |
try:
|
83 |
-
time.sleep(random.uniform(0.
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
89 |
except Exception as e:
|
90 |
-
return f"
|
91 |
|
92 |
-
#
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
agent_type: str
|
98 |
-
final_answer: str
|
99 |
-
perf: Dict[str, Any]
|
100 |
-
agno_resp: str
|
101 |
|
102 |
-
#
|
103 |
-
class
|
104 |
-
"""Enhanced
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
self.tools = [
|
109 |
-
multiply, add, subtract, divide, modulus,
|
110 |
-
optimized_web_search, optimized_wiki_search
|
111 |
-
]
|
112 |
-
self.graph = self._build_graph()
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
)
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
t = "deepseek"
|
140 |
-
elif "llama-8" in q:
|
141 |
-
t = "llama8"
|
142 |
-
elif len(q.split()) > 20: # Complex queries
|
143 |
-
t = "llama70"
|
144 |
-
else:
|
145 |
-
t = "llama8" # Default for simple queries
|
146 |
-
|
147 |
-
return {**st, "agent_type": t}
|
148 |
-
|
149 |
-
def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState:
|
150 |
-
"""Process query with Llama-3 8B model."""
|
151 |
-
t0 = time.time()
|
152 |
-
try:
|
153 |
-
# Create enhanced prompt with context
|
154 |
-
enhanced_query = f"""
|
155 |
-
Question: {st["query"]}
|
156 |
-
|
157 |
-
Please provide a direct, accurate answer to this question. Do not repeat the question.
|
158 |
-
"""
|
159 |
-
|
160 |
-
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
161 |
-
res = llama8_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
162 |
-
|
163 |
-
# Extract and clean the answer
|
164 |
-
answer = res.content.strip()
|
165 |
-
if "FINAL ANSWER:" in answer:
|
166 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
167 |
-
|
168 |
-
return {**st,
|
169 |
-
"final_answer": answer,
|
170 |
-
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}}
|
171 |
-
except Exception as e:
|
172 |
-
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
177 |
try:
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
Please provide a direct, accurate answer to this question. Do not repeat the question.
|
183 |
-
"""
|
184 |
-
|
185 |
-
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
186 |
-
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
187 |
-
|
188 |
-
# Extract and clean the answer
|
189 |
-
answer = res.content.strip()
|
190 |
-
if "FINAL ANSWER:" in answer:
|
191 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
192 |
-
|
193 |
-
return {**st,
|
194 |
-
"final_answer": answer,
|
195 |
-
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}}
|
196 |
except Exception as e:
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
Please provide a direct, accurate answer to this question. Do not repeat the question.
|
208 |
-
"""
|
209 |
-
|
210 |
-
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
211 |
-
res = deepseek_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
212 |
-
|
213 |
-
# Extract and clean the answer
|
214 |
-
answer = res.content.strip()
|
215 |
-
if "FINAL ANSWER:" in answer:
|
216 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]):
|
234 |
-
search_results = optimized_wiki_search.invoke({"query": query})
|
235 |
else:
|
236 |
-
|
237 |
-
|
238 |
-
# Create comprehensive prompt with search results
|
239 |
-
enhanced_query = f"""
|
240 |
-
Original Question: {query}
|
241 |
-
|
242 |
-
Search Results:
|
243 |
-
{search_results}
|
244 |
-
|
245 |
-
Based on the search results above, provide a direct answer to the original question.
|
246 |
-
Extract the specific information requested. Do not repeat the question.
|
247 |
-
"""
|
248 |
-
|
249 |
-
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
|
250 |
-
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
|
251 |
-
|
252 |
-
# Extract and clean the answer
|
253 |
-
answer = res.content.strip()
|
254 |
-
if "FINAL ANSWER:" in answer:
|
255 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
"perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}}
|
260 |
-
except Exception as e:
|
261 |
-
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
|
262 |
-
|
263 |
-
# Build graph
|
264 |
-
g = StateGraph(EnhancedAgentState)
|
265 |
-
g.add_node("router", router)
|
266 |
-
g.add_node("llama8", llama8_node)
|
267 |
-
g.add_node("llama70", llama70_node)
|
268 |
-
g.add_node("deepseek", deepseek_node)
|
269 |
-
g.add_node("search_enhanced", search_enhanced_node)
|
270 |
-
|
271 |
-
g.set_entry_point("router")
|
272 |
-
g.add_conditional_edges("router", lambda s: s["agent_type"], {
|
273 |
-
"llama8": "llama8",
|
274 |
-
"llama70": "llama70",
|
275 |
-
"deepseek": "deepseek",
|
276 |
-
"search_enhanced": "search_enhanced"
|
277 |
-
})
|
278 |
|
279 |
-
|
280 |
-
g.add_edge(node, END)
|
281 |
-
|
282 |
-
return g.compile(checkpointer=MemorySaver())
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
}
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
out = self.graph.invoke(state, cfg)
|
298 |
-
answer = out.get("final_answer", "").strip()
|
299 |
-
|
300 |
-
# Ensure we don't return the question as the answer
|
301 |
-
if answer == q or answer.startswith(q):
|
302 |
-
return "Information not available"
|
303 |
-
|
304 |
-
return answer if answer else "No answer generated"
|
305 |
-
except Exception as e:
|
306 |
-
return f"Error processing query: {e}"
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
return HybridLangGraphMultiLLMSystem().graph
|
311 |
|
312 |
-
|
313 |
-
|
314 |
-
|
|
|
315 |
|
316 |
test_questions = [
|
|
|
317 |
"What is 25 multiplied by 17?",
|
318 |
-
"Who
|
319 |
-
"Find information about artificial intelligence on Wikipedia"
|
320 |
]
|
321 |
|
322 |
for question in test_questions:
|
323 |
-
print(f"
|
324 |
-
|
325 |
-
|
326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""
|
2 |
+
Enhanced LangGraph Agent with Multi-LLM Support and Proper Question Answering
|
3 |
+
Combines your original LangGraph structure with enhanced response handling
|
4 |
"""
|
5 |
|
6 |
import os
|
7 |
import time
|
8 |
import random
|
|
|
|
|
9 |
from dotenv import load_dotenv
|
10 |
+
from typing import List, Dict, Any, TypedDict, Annotated
|
11 |
+
import operator
|
12 |
|
13 |
+
from langgraph.graph import START, StateGraph, MessagesState, END
|
14 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
|
|
|
|
15 |
from langgraph.checkpoint.memory import MemorySaver
|
16 |
+
|
17 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
18 |
from langchain_groq import ChatGroq
|
19 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
20 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
21 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
22 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
23 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
24 |
+
from langchain_core.tools import tool
|
25 |
+
from langchain.tools.retriever import create_retriever_tool
|
26 |
+
from supabase.client import Client, create_client
|
27 |
|
28 |
load_dotenv()
|
29 |
|
30 |
+
# Enhanced system prompt for better question answering
|
31 |
+
ENHANCED_SYSTEM_PROMPT = """You are a helpful assistant tasked with answering questions using a set of tools.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
CRITICAL INSTRUCTIONS:
|
34 |
+
1. Read the question carefully and understand what specific information is being asked
|
35 |
+
2. Use the appropriate tools to find the exact information requested
|
36 |
+
3. For factual questions, search for current and accurate information
|
37 |
+
4. For calculations, use the math tools provided
|
38 |
+
5. Always provide specific, direct answers - never repeat the question as your answer
|
39 |
+
6. If you cannot find the information, state "Information not available"
|
40 |
+
7. Format your final response as: FINAL ANSWER: [your specific answer]
|
41 |
+
|
42 |
+
ANSWER FORMAT RULES:
|
43 |
+
- For numbers: provide just the number without commas or units unless specified
|
44 |
+
- For names/strings: provide the exact name or term without articles
|
45 |
+
- For lists: provide comma-separated values
|
46 |
+
- Be concise and specific in your final answer
|
47 |
+
|
48 |
+
Remember: Your job is to ANSWER the question, not repeat it back."""
|
49 |
+
|
50 |
+
# ---- Enhanced Tool Definitions ----
|
51 |
@tool
|
52 |
def multiply(a: int, b: int) -> int:
|
53 |
+
"""Multiply two numbers.
|
54 |
+
Args:
|
55 |
+
a: first int
|
56 |
+
b: second int
|
57 |
+
"""
|
58 |
return a * b
|
59 |
|
60 |
@tool
|
61 |
def add(a: int, b: int) -> int:
|
62 |
+
"""Add two numbers.
|
63 |
+
Args:
|
64 |
+
a: first int
|
65 |
+
b: second int
|
66 |
+
"""
|
67 |
return a + b
|
68 |
|
69 |
@tool
|
70 |
def subtract(a: int, b: int) -> int:
|
71 |
+
"""Subtract two numbers.
|
72 |
+
Args:
|
73 |
+
a: first int
|
74 |
+
b: second int
|
75 |
+
"""
|
76 |
return a - b
|
77 |
|
78 |
@tool
|
79 |
def divide(a: int, b: int) -> float:
|
80 |
+
"""Divide two numbers.
|
81 |
+
Args:
|
82 |
+
a: first int
|
83 |
+
b: second int
|
84 |
+
"""
|
85 |
if b == 0:
|
86 |
raise ValueError("Cannot divide by zero.")
|
87 |
return a / b
|
88 |
|
89 |
@tool
|
90 |
def modulus(a: int, b: int) -> int:
|
91 |
+
"""Get the modulus of two numbers.
|
92 |
+
Args:
|
93 |
+
a: first int
|
94 |
+
b: second int
|
95 |
+
"""
|
96 |
return a % b
|
97 |
|
98 |
@tool
|
99 |
+
def wiki_search(query: str) -> str:
|
100 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
101 |
+
Args:
|
102 |
+
query: The search query.
|
103 |
+
"""
|
104 |
try:
|
105 |
+
time.sleep(random.uniform(0.5, 1.0)) # Rate limiting
|
106 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
107 |
+
if not search_docs:
|
108 |
+
return "No Wikipedia results found"
|
109 |
+
|
110 |
+
formatted_search_docs = "\n\n---\n\n".join([
|
111 |
+
f'<Document source="{doc.metadata.get("source", "Wikipedia")}" title="{doc.metadata.get("title", "")}">\n{doc.page_content[:1500]}\n</Document>'
|
112 |
+
for doc in search_docs
|
113 |
+
])
|
114 |
+
return formatted_search_docs
|
115 |
+
except Exception as e:
|
116 |
+
return f"Wikipedia search failed: {e}"
|
117 |
+
|
118 |
+
@tool
|
119 |
+
def web_search(query: str) -> str:
|
120 |
+
"""Search Tavily for a query and return maximum 3 results.
|
121 |
+
Args:
|
122 |
+
query: The search query.
|
123 |
+
"""
|
124 |
+
try:
|
125 |
+
time.sleep(random.uniform(0.7, 1.2)) # Rate limiting
|
126 |
search_tool = TavilySearchResults(max_results=3)
|
127 |
+
search_docs = search_tool.invoke({"query": query})
|
128 |
+
if not search_docs:
|
129 |
+
return "No web search results found"
|
130 |
+
|
131 |
+
formatted_search_docs = "\n\n---\n\n".join([
|
132 |
+
f'<Document source="{doc.get("url", "")}">\n{doc.get("content", "")[:1200]}\n</Document>'
|
133 |
+
for doc in search_docs
|
134 |
+
])
|
135 |
+
return formatted_search_docs
|
136 |
except Exception as e:
|
137 |
return f"Web search failed: {e}"
|
138 |
|
139 |
@tool
|
140 |
+
def arxiv_search(query: str) -> str:
|
141 |
+
"""Search Arxiv for a query and return maximum 3 results.
|
142 |
+
Args:
|
143 |
+
query: The search query.
|
144 |
+
"""
|
145 |
try:
|
146 |
+
time.sleep(random.uniform(0.5, 1.0)) # Rate limiting
|
147 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
148 |
+
if not search_docs:
|
149 |
+
return "No ArXiv results found"
|
150 |
+
|
151 |
+
formatted_search_docs = "\n\n---\n\n".join([
|
152 |
+
f'<Document source="{doc.metadata.get("source", "ArXiv")}" title="{doc.metadata.get("title", "")}">\n{doc.page_content[:1000]}\n</Document>'
|
153 |
+
for doc in search_docs
|
154 |
+
])
|
155 |
+
return formatted_search_docs
|
156 |
except Exception as e:
|
157 |
+
return f"ArXiv search failed: {e}"
|
158 |
|
159 |
+
# Initialize tools list
|
160 |
+
tools = [
|
161 |
+
multiply, add, subtract, divide, modulus,
|
162 |
+
wiki_search, web_search, arxiv_search
|
163 |
+
]
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
# Enhanced State for better tracking
|
166 |
+
class EnhancedState(MessagesState):
|
167 |
+
"""Enhanced state with additional tracking"""
|
168 |
+
query: str = ""
|
169 |
+
tools_used: List[str] = []
|
170 |
+
search_results: str = ""
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
def build_graph(provider: str = "groq"):
|
173 |
+
"""Build the enhanced graph with proper error handling and response formatting"""
|
174 |
+
|
175 |
+
# Initialize LLM based on provider
|
176 |
+
if provider == "google":
|
177 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
178 |
+
elif provider == "groq":
|
179 |
+
llm = ChatGroq(model="llama3-70b-8192", temperature=0) # Using more reliable model
|
180 |
+
elif provider == "huggingface":
|
181 |
+
llm = ChatHuggingFace(
|
182 |
+
llm=HuggingFaceEndpoint(
|
183 |
+
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
184 |
+
temperature=0,
|
185 |
+
),
|
186 |
)
|
187 |
+
else:
|
188 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
189 |
+
|
190 |
+
# Bind tools to LLM
|
191 |
+
llm_with_tools = llm.bind_tools(tools)
|
192 |
|
193 |
+
# Initialize vector store if available
|
194 |
+
vector_store = None
|
195 |
+
try:
|
196 |
+
if os.getenv("SUPABASE_URL") and os.getenv("SUPABASE_SERVICE_KEY"):
|
197 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
198 |
+
supabase: Client = create_client(
|
199 |
+
os.environ.get("SUPABASE_URL"),
|
200 |
+
os.environ.get("SUPABASE_SERVICE_KEY")
|
201 |
+
)
|
202 |
+
vector_store = SupabaseVectorStore(
|
203 |
+
client=supabase,
|
204 |
+
embedding=embeddings,
|
205 |
+
table_name="documents",
|
206 |
+
query_name="match_documents_langchain",
|
207 |
+
)
|
208 |
+
except Exception as e:
|
209 |
+
print(f"Vector store initialization failed: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
def retriever(state: MessagesState):
|
212 |
+
"""Enhanced retriever node with fallback"""
|
213 |
+
messages = state["messages"]
|
214 |
+
query = messages[-1].content if messages else ""
|
215 |
+
|
216 |
+
# Try to get similar questions from vector store
|
217 |
+
similar_context = ""
|
218 |
+
if vector_store:
|
219 |
try:
|
220 |
+
similar_questions = vector_store.similarity_search(query, k=1)
|
221 |
+
if similar_questions:
|
222 |
+
similar_context = f"\n\nSimilar example for reference:\n{similar_questions[0].page_content}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
except Exception as e:
|
224 |
+
print(f"Vector search failed: {e}")
|
225 |
+
|
226 |
+
# Enhanced system message with context
|
227 |
+
enhanced_prompt = ENHANCED_SYSTEM_PROMPT + similar_context
|
228 |
+
sys_msg = SystemMessage(content=enhanced_prompt)
|
229 |
+
|
230 |
+
return {"messages": [sys_msg] + messages}
|
231 |
|
232 |
+
def assistant(state: MessagesState):
|
233 |
+
"""Enhanced assistant node with better response handling"""
|
234 |
+
try:
|
235 |
+
response = llm_with_tools.invoke(state["messages"])
|
236 |
+
|
237 |
+
# Ensure response is properly formatted
|
238 |
+
if hasattr(response, 'content'):
|
239 |
+
content = response.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
241 |
+
# Check if this is just repeating the question
|
242 |
+
original_query = state["messages"][-1].content if state["messages"] else ""
|
243 |
+
if content.strip() == original_query.strip():
|
244 |
+
# Force a better response
|
245 |
+
enhanced_messages = state["messages"] + [
|
246 |
+
HumanMessage(content=f"Please provide a specific answer to this question, do not repeat the question: {original_query}")
|
247 |
+
]
|
248 |
+
response = llm_with_tools.invoke(enhanced_messages)
|
249 |
+
|
250 |
+
return {"messages": [response]}
|
251 |
+
except Exception as e:
|
252 |
+
error_response = AIMessage(content=f"Error processing request: {e}")
|
253 |
+
return {"messages": [error_response]}
|
254 |
|
255 |
+
def format_final_answer(state: MessagesState):
|
256 |
+
"""Format the final answer properly"""
|
257 |
+
messages = state["messages"]
|
258 |
+
if not messages:
|
259 |
+
return {"messages": [AIMessage(content="FINAL ANSWER: Information not available")]}
|
260 |
+
|
261 |
+
last_message = messages[-1]
|
262 |
+
if hasattr(last_message, 'content'):
|
263 |
+
content = last_message.content
|
264 |
|
265 |
+
# Ensure proper formatting
|
266 |
+
if "FINAL ANSWER:" not in content:
|
267 |
+
# Extract the key information and format it
|
268 |
+
if content.strip():
|
269 |
+
formatted_content = f"FINAL ANSWER: {content.strip()}"
|
|
|
|
|
270 |
else:
|
271 |
+
formatted_content = "FINAL ANSWER: Information not available"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
272 |
|
273 |
+
formatted_message = AIMessage(content=formatted_content)
|
274 |
+
return {"messages": messages[:-1] + [formatted_message]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
+
return {"messages": messages}
|
|
|
|
|
|
|
277 |
|
278 |
+
# Build the graph
|
279 |
+
builder = StateGraph(MessagesState)
|
280 |
+
|
281 |
+
# Add nodes
|
282 |
+
builder.add_node("retriever", retriever)
|
283 |
+
builder.add_node("assistant", assistant)
|
284 |
+
builder.add_node("tools", ToolNode(tools))
|
285 |
+
builder.add_node("formatter", format_final_answer)
|
286 |
+
|
287 |
+
# Add edges
|
288 |
+
builder.add_edge(START, "retriever")
|
289 |
+
builder.add_edge("retriever", "assistant")
|
290 |
+
builder.add_conditional_edges(
|
291 |
+
"assistant",
|
292 |
+
tools_condition,
|
293 |
+
{
|
294 |
+
"tools": "tools",
|
295 |
+
"__end__": "formatter"
|
296 |
}
|
297 |
+
)
|
298 |
+
builder.add_edge("tools", "assistant")
|
299 |
+
builder.add_edge("formatter", END)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
+
# Compile graph with checkpointer
|
302 |
+
return builder.compile(checkpointer=MemorySaver())
|
|
|
303 |
|
304 |
+
# Test function
|
305 |
+
def test_agent():
|
306 |
+
"""Test the agent with sample questions"""
|
307 |
+
graph = build_graph(provider="groq")
|
308 |
|
309 |
test_questions = [
|
310 |
+
"How many studio albums were published by Mercedes Sosa between 2000 and 2009?",
|
311 |
"What is 25 multiplied by 17?",
|
312 |
+
"Who nominated the only Featured Article on English Wikipedia about a dinosaur that was promoted in November 2004?"
|
|
|
313 |
]
|
314 |
|
315 |
for question in test_questions:
|
316 |
+
print(f"\nQuestion: {question}")
|
317 |
+
print("-" * 60)
|
318 |
+
|
319 |
+
try:
|
320 |
+
messages = [HumanMessage(content=question)]
|
321 |
+
config = {"configurable": {"thread_id": f"test_{hash(question)}"}}
|
322 |
+
result = graph.invoke({"messages": messages}, config)
|
323 |
+
|
324 |
+
if result and "messages" in result:
|
325 |
+
final_message = result["messages"][-1]
|
326 |
+
if hasattr(final_message, 'content'):
|
327 |
+
print(f"Answer: {final_message.content}")
|
328 |
+
else:
|
329 |
+
print(f"Answer: {final_message}")
|
330 |
+
else:
|
331 |
+
print("Answer: No response generated")
|
332 |
+
except Exception as e:
|
333 |
+
print(f"Error: {e}")
|
334 |
+
|
335 |
+
print()
|
336 |
+
|
337 |
+
if __name__ == "__main__":
|
338 |
+
# Run tests
|
339 |
+
test_agent()
|