Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
""" Enhanced Multi-LLM Agent Evaluation Runner
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
@@ -11,56 +11,70 @@ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
11 |
|
12 |
# --- Enhanced Agent Definition ---
|
13 |
class EnhancedMultiLLMAgent:
|
14 |
-
"""A multi-provider LangGraph agent with
|
15 |
def __init__(self):
|
16 |
-
print("Enhanced Multi-LLM Agent
|
17 |
try:
|
18 |
self.graph = build_graph(provider="groq")
|
19 |
-
print("
|
20 |
except Exception as e:
|
21 |
print(f"Error building graph: {e}")
|
22 |
self.graph = None
|
23 |
|
24 |
def __call__(self, question: str) -> str:
|
25 |
-
print(f"Agent received question
|
26 |
|
27 |
if self.graph is None:
|
28 |
return "Error: Agent not properly initialized"
|
29 |
|
30 |
-
#
|
31 |
state = {
|
32 |
"messages": [HumanMessage(content=question)],
|
33 |
-
"query": question, #
|
34 |
"agent_type": "",
|
35 |
"final_answer": "",
|
36 |
"perf": {},
|
37 |
-
"agno_resp": ""
|
38 |
-
"tools_used": [],
|
39 |
-
"reasoning": "",
|
40 |
-
"confidence": ""
|
41 |
}
|
42 |
-
#
|
43 |
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
|
44 |
|
45 |
try:
|
46 |
result = self.graph.invoke(state, config)
|
47 |
|
48 |
-
#
|
49 |
if isinstance(result, dict):
|
50 |
-
|
51 |
-
|
52 |
-
elif 'final_answer' in result:
|
53 |
answer = result['final_answer']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
else:
|
55 |
answer = str(result)
|
56 |
else:
|
57 |
answer = str(result)
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Extract final answer if present
|
60 |
if "FINAL ANSWER:" in answer:
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
|
65 |
except Exception as e:
|
66 |
error_msg = f"Error: {str(e)}"
|
@@ -68,10 +82,7 @@ class EnhancedMultiLLMAgent:
|
|
68 |
return error_msg
|
69 |
|
70 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
71 |
-
"""
|
72 |
-
Fetches all questions, runs the Enhanced Multi-LLM Agent on them,
|
73 |
-
submits all answers, and displays the results.
|
74 |
-
"""
|
75 |
space_id = os.getenv("SPACE_ID")
|
76 |
|
77 |
if profile:
|
@@ -114,7 +125,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
114 |
# 3. Run your Agent
|
115 |
results_log = []
|
116 |
answers_payload = []
|
117 |
-
print(f"Running Enhanced Multi-LLM agent
|
118 |
|
119 |
for i, item in enumerate(questions_data):
|
120 |
task_id = item.get("task_id")
|
@@ -128,6 +139,11 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
128 |
|
129 |
try:
|
130 |
submitted_answer = agent(question_text)
|
|
|
|
|
|
|
|
|
|
|
131 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
132 |
results_log.append({
|
133 |
"Task ID": task_id,
|
@@ -175,36 +191,26 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
175 |
results_df = pd.DataFrame(results_log)
|
176 |
return status_message, results_df
|
177 |
|
178 |
-
# --- Build Gradio Interface
|
179 |
with gr.Blocks() as demo:
|
180 |
-
gr.Markdown("# Enhanced Multi-LLM Agent
|
181 |
gr.Markdown(
|
182 |
"""
|
183 |
**Instructions:**
|
184 |
1. Log in to your Hugging Face account using the button below.
|
185 |
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
186 |
|
187 |
-
**
|
188 |
-
-
|
189 |
-
-
|
190 |
-
-
|
191 |
-
-
|
192 |
-
-
|
193 |
-
- **Error Handling**: Robust fallback mechanisms and comprehensive logging
|
194 |
-
|
195 |
-
**Routing Examples:**
|
196 |
-
- Standard: "What is the capital of France?" β Llama-3 8B
|
197 |
-
- Complex: "Analyze quantum computing principles" β Llama-3 70B
|
198 |
-
- Search: "Find information about Mercedes Sosa" β Search-Enhanced
|
199 |
-
- Agno: "agno llama-70: Systematic analysis of AI ethics" β Agno Llama-3 70B
|
200 |
-
- Provider-specific: "google: Explain machine learning" β Google Gemini
|
201 |
"""
|
202 |
)
|
203 |
|
204 |
gr.LoginButton()
|
205 |
-
|
206 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
207 |
-
|
208 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
209 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
210 |
|
@@ -214,5 +220,5 @@ with gr.Blocks() as demo:
|
|
214 |
)
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
-
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent
|
218 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
""" Enhanced Multi-LLM Agent Evaluation Runner - CORRECTED VERSION"""
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
11 |
|
12 |
# --- Enhanced Agent Definition ---
|
13 |
class EnhancedMultiLLMAgent:
|
14 |
+
"""A multi-provider LangGraph agent with proper response handling."""
|
15 |
def __init__(self):
|
16 |
+
print("Enhanced Multi-LLM Agent initialized.")
|
17 |
try:
|
18 |
self.graph = build_graph(provider="groq")
|
19 |
+
print("Multi-LLM Graph built successfully.")
|
20 |
except Exception as e:
|
21 |
print(f"Error building graph: {e}")
|
22 |
self.graph = None
|
23 |
|
24 |
def __call__(self, question: str) -> str:
|
25 |
+
print(f"Agent received question: {question[:100]}...")
|
26 |
|
27 |
if self.graph is None:
|
28 |
return "Error: Agent not properly initialized"
|
29 |
|
30 |
+
# Create complete state structure
|
31 |
state = {
|
32 |
"messages": [HumanMessage(content=question)],
|
33 |
+
"query": question, # Critical: this must match the question
|
34 |
"agent_type": "",
|
35 |
"final_answer": "",
|
36 |
"perf": {},
|
37 |
+
"agno_resp": ""
|
|
|
|
|
|
|
38 |
}
|
39 |
+
# Always provide the required config with thread_id
|
40 |
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
|
41 |
|
42 |
try:
|
43 |
result = self.graph.invoke(state, config)
|
44 |
|
45 |
+
# CORRECTED: Proper response extraction
|
46 |
if isinstance(result, dict):
|
47 |
+
# First try to get final_answer from the state
|
48 |
+
if 'final_answer' in result and result['final_answer']:
|
|
|
49 |
answer = result['final_answer']
|
50 |
+
# Fallback to messages if final_answer is empty
|
51 |
+
elif 'messages' in result and result['messages']:
|
52 |
+
last_message = result['messages'][-1]
|
53 |
+
if hasattr(last_message, 'content'):
|
54 |
+
answer = last_message.content
|
55 |
+
else:
|
56 |
+
answer = str(last_message)
|
57 |
else:
|
58 |
answer = str(result)
|
59 |
else:
|
60 |
answer = str(result)
|
61 |
|
62 |
+
# Clean the answer
|
63 |
+
answer = answer.strip()
|
64 |
+
|
65 |
+
# CRITICAL FIX: Ensure we don't return the question as answer
|
66 |
+
if answer == question or answer.startswith(question):
|
67 |
+
return "Information not available"
|
68 |
+
|
69 |
# Extract final answer if present
|
70 |
if "FINAL ANSWER:" in answer:
|
71 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
72 |
+
|
73 |
+
# Additional validation
|
74 |
+
if not answer or len(answer.strip()) == 0:
|
75 |
+
return "No answer generated"
|
76 |
+
|
77 |
+
return answer
|
78 |
|
79 |
except Exception as e:
|
80 |
error_msg = f"Error: {str(e)}"
|
|
|
82 |
return error_msg
|
83 |
|
84 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
85 |
+
"""Fetch questions, run agent, and submit answers."""
|
|
|
|
|
|
|
86 |
space_id = os.getenv("SPACE_ID")
|
87 |
|
88 |
if profile:
|
|
|
125 |
# 3. Run your Agent
|
126 |
results_log = []
|
127 |
answers_payload = []
|
128 |
+
print(f"Running Enhanced Multi-LLM agent on {len(questions_data)} questions...")
|
129 |
|
130 |
for i, item in enumerate(questions_data):
|
131 |
task_id = item.get("task_id")
|
|
|
139 |
|
140 |
try:
|
141 |
submitted_answer = agent(question_text)
|
142 |
+
|
143 |
+
# Additional validation to prevent question repetition
|
144 |
+
if submitted_answer == question_text or submitted_answer.startswith(question_text):
|
145 |
+
submitted_answer = "Information not available"
|
146 |
+
|
147 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
148 |
results_log.append({
|
149 |
"Task ID": task_id,
|
|
|
191 |
results_df = pd.DataFrame(results_log)
|
192 |
return status_message, results_df
|
193 |
|
194 |
+
# --- Build Gradio Interface ---
|
195 |
with gr.Blocks() as demo:
|
196 |
+
gr.Markdown("# Enhanced Multi-LLM Agent - CORRECTED VERSION")
|
197 |
gr.Markdown(
|
198 |
"""
|
199 |
**Instructions:**
|
200 |
1. Log in to your Hugging Face account using the button below.
|
201 |
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
202 |
|
203 |
+
**FIXES APPLIED:**
|
204 |
+
- β
Proper response extraction from graph state
|
205 |
+
- β
Prevention of question repetition as answer
|
206 |
+
- β
Enhanced prompt engineering for better responses
|
207 |
+
- β
Improved error handling and validation
|
208 |
+
- β
Search-enhanced processing for information retrieval
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
"""
|
210 |
)
|
211 |
|
212 |
gr.LoginButton()
|
|
|
213 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
|
|
214 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
215 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
216 |
|
|
|
220 |
)
|
221 |
|
222 |
if __name__ == "__main__":
|
223 |
+
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent CORRECTED Starting " + "-"*30)
|
224 |
demo.launch(debug=True, share=False)
|