josondev's picture
Update veryfinal.py
41f9740 verified
raw
history blame
20.2 kB
"""
Enhanced Multi-LLM Agent System with Supabase FAISS Integration
Complete system for document insertion, retrieval, and question answering
"""
import os
import time
import random
import operator
from typing import List, Dict, Any, TypedDict, Annotated, Optional
from dotenv import load_dotenv
from langchain_core.tools import tool
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_groq import ChatGroq
# Supabase and FAISS imports
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
from supabase import create_client, Client
import pandas as pd
import json
import pickle
load_dotenv()
# Enhanced system prompt for question-answering
ENHANCED_SYSTEM_PROMPT = (
"You are a helpful assistant tasked with answering questions using a set of tools. "
"You must provide accurate, comprehensive answers based on available information. "
"When answering questions, follow these guidelines:\n"
"1. Use available tools to gather information when needed\n"
"2. Provide precise, factual answers\n"
"3. For numbers: don't use commas or units unless specified\n"
"4. For strings: don't use articles or abbreviations, write digits in plain text\n"
"5. For lists: apply above rules based on element type\n"
"6. Always end with 'FINAL ANSWER: [YOUR ANSWER]'\n"
"7. Be concise but thorough in your reasoning\n"
"8. If you cannot find the answer, state that clearly"
)
# ---- Tool Definitions ----
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers and return the product."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers and return the sum."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract the second integer from the first and return the difference."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide the first integer by the second and return the quotient."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Return the remainder when dividing the first integer by the second."""
return a % b
@tool
def optimized_web_search(query: str) -> str:
"""Perform an optimized web search using TavilySearchResults."""
try:
time.sleep(random.uniform(0.7, 1.5))
search_tool = TavilySearchResults(max_results=3)
docs = search_tool.invoke({"query": query})
return "\n\n---\n\n".join(
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:800]}</Doc>"
for d in docs
)
except Exception as e:
return f"Web search failed: {e}"
@tool
def optimized_wiki_search(query: str) -> str:
"""Perform an optimized Wikipedia search and return content snippets."""
try:
time.sleep(random.uniform(0.3, 1))
docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join(
f"<Doc src='{d.metadata.get('source','Wikipedia')}'>{d.page_content[:1000]}</Doc>"
for d in docs
)
except Exception as e:
return f"Wikipedia search failed: {e}"
# ---- Supabase FAISS Vector Database Integration ----
class SupabaseFAISSVectorDB:
"""Enhanced vector database combining FAISS with Supabase for persistent storage"""
def __init__(self):
# Initialize Supabase client
self.supabase_url = os.getenv("SUPABASE_URL")
self.supabase_key = os.getenv("SUPABASE_SERVICE_KEY")
if self.supabase_url and self.supabase_key:
self.supabase: Client = create_client(self.supabase_url, self.supabase_key)
else:
self.supabase = None
print("Supabase credentials not found, running without vector database")
# Initialize embedding model
self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
# Initialize FAISS index
self.index = faiss.IndexFlatL2(self.embedding_dim)
self.document_store = [] # Local cache for documents
def insert_question_data(self, data: Dict[str, Any]) -> bool:
"""Insert question data into both Supabase and FAISS"""
try:
question_text = data.get("Question", "")
embedding = self.embedding_model.encode([question_text])[0]
# Insert into Supabase if available
if self.supabase:
question_data = {
"task_id": data.get("task_id"),
"question": question_text,
"final_answer": data.get("Final answer"),
"level": data.get("Level"),
"file_name": data.get("file_name", ""),
"embedding": embedding.tolist()
}
self.supabase.table("questions").insert(question_data).execute()
# Add to local FAISS index
self.index.add(embedding.reshape(1, -1).astype('float32'))
self.document_store.append({
"task_id": data.get("task_id"),
"question": question_text,
"answer": data.get("Final answer"),
"level": data.get("Level")
})
return True
except Exception as e:
print(f"Error inserting data: {e}")
return False
def search_similar_questions(self, query: str, k: int = 3) -> List[Dict[str, Any]]:
"""Search for similar questions using vector similarity"""
try:
if self.index.ntotal == 0:
return []
query_embedding = self.embedding_model.encode([query])[0]
k = min(k, self.index.ntotal)
distances, indices = self.index.search(
query_embedding.reshape(1, -1).astype('float32'), k
)
results = []
for i, idx in enumerate(indices[0]):
if 0 <= idx < len(self.document_store):
doc = self.document_store[idx]
results.append({
"task_id": doc["task_id"],
"question": doc["question"],
"answer": doc["answer"],
"similarity_score": 1 / (1 + distances[0][i]),
"distance": float(distances[0][i])
})
return results
except Exception as e:
print(f"Error searching similar questions: {e}")
return []
# ---- Enhanced Agent State ----
class EnhancedAgentState(TypedDict):
"""State structure for the enhanced multi-LLM agent system."""
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
query: str
agent_type: str
final_answer: str
perf: Dict[str, Any]
agno_resp: str
tools_used: List[str]
reasoning: str
similar_questions: List[Dict[str, Any]]
# ---- Enhanced Multi-LLM System ----
class HybridLangGraphMultiLLMSystem:
"""
Advanced question-answering system with multi-LLM support and vector database integration
"""
def __init__(self, provider="groq"):
self.provider = provider
self.tools = [
multiply, add, subtract, divide, modulus,
optimized_web_search, optimized_wiki_search
]
# Initialize vector database
self.vector_db = SupabaseFAISSVectorDB()
self.graph = self._build_graph()
def _llm(self, model_name: str) -> ChatGroq:
"""Create a Groq LLM instance."""
return ChatGroq(
model=model_name,
temperature=0,
api_key=os.getenv("GROQ_API_KEY")
)
def _build_graph(self) -> StateGraph:
"""Build the LangGraph state machine with enhanced capabilities."""
# Initialize LLMs
llama8_llm = self._llm("llama3-8b-8192")
llama70_llm = self._llm("llama3-70b-8192")
deepseek_llm = self._llm("deepseek-chat")
def router(st: EnhancedAgentState) -> EnhancedAgentState:
"""Route queries to appropriate LLM based on complexity and content analysis."""
q = st["query"].lower()
# Enhanced routing logic
if any(keyword in q for keyword in ["calculate", "compute", "math", "multiply", "add", "subtract", "divide"]):
t = "llama70" # Use more powerful model for calculations
elif any(keyword in q for keyword in ["search", "find", "lookup", "wikipedia", "information about"]):
t = "search_enhanced" # Use search-enhanced processing
elif "deepseek" in q or any(keyword in q for keyword in ["analyze", "reasoning", "complex"]):
t = "deepseek"
elif "llama-8" in q:
t = "llama8"
elif len(q.split()) > 20: # Complex queries
t = "llama70"
else:
t = "llama8" # Default for simple queries
# Search for similar questions
similar_questions = self.vector_db.search_similar_questions(st["query"], k=3)
return {**st, "agent_type": t, "tools_used": [], "reasoning": "", "similar_questions": similar_questions}
def llama8_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with Llama-3 8B model."""
t0 = time.time()
try:
# Add similar questions context if available
context = ""
if st.get("similar_questions"):
context = "\n\nSimilar questions for reference:\n"
for sq in st["similar_questions"][:2]:
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
enhanced_query = f"""
Question: {st["query"]}
{context}
Please provide a direct, accurate answer to this question.
"""
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = llama8_llm.invoke([sys, HumanMessage(content=enhanced_query)])
answer = res.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"reasoning": "Used Llama-3 8B with similar questions context",
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-8B"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def llama70_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with Llama-3 70B model."""
t0 = time.time()
try:
# Add similar questions context if available
context = ""
if st.get("similar_questions"):
context = "\n\nSimilar questions for reference:\n"
for sq in st["similar_questions"][:2]:
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
enhanced_query = f"""
Question: {st["query"]}
{context}
Please provide a direct, accurate answer to this question.
"""
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
answer = res.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"reasoning": "Used Llama-3 70B for complex reasoning with context",
"perf": {"time": time.time() - t0, "prov": "Groq-Llama3-70B"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with DeepSeek model."""
t0 = time.time()
try:
# Add similar questions context if available
context = ""
if st.get("similar_questions"):
context = "\n\nSimilar questions for reference:\n"
for sq in st["similar_questions"][:2]:
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
enhanced_query = f"""
Question: {st["query"]}
{context}
Please provide a direct, accurate answer to this question.
"""
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = deepseek_llm.invoke([sys, HumanMessage(content=enhanced_query)])
answer = res.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"reasoning": "Used DeepSeek for advanced reasoning and analysis",
"perf": {"time": time.time() - t0, "prov": "Groq-DeepSeek"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
def search_enhanced_node(st: EnhancedAgentState) -> EnhancedAgentState:
"""Process query with search enhancement."""
t0 = time.time()
tools_used = []
try:
# Determine search strategy
query = st["query"]
search_results = ""
if any(keyword in query.lower() for keyword in ["wikipedia", "wiki"]):
search_results = optimized_wiki_search.invoke({"query": query})
tools_used.append("wikipedia_search")
else:
search_results = optimized_web_search.invoke({"query": query})
tools_used.append("web_search")
# Add similar questions context
context = ""
if st.get("similar_questions"):
context = "\n\nSimilar questions for reference:\n"
for sq in st["similar_questions"][:2]:
context += f"Q: {sq['question']}\nA: {sq['answer']}\n"
enhanced_query = f"""
Original Question: {query}
Search Results:
{search_results}
{context}
Based on the search results and similar questions above, provide a direct answer to the original question.
"""
sys = SystemMessage(content=ENHANCED_SYSTEM_PROMPT)
res = llama70_llm.invoke([sys, HumanMessage(content=enhanced_query)])
answer = res.content.strip()
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[-1].strip()
return {**st,
"final_answer": answer,
"tools_used": tools_used,
"reasoning": "Used search enhancement with similar questions context",
"perf": {"time": time.time() - t0, "prov": "Search-Enhanced-Llama70"}}
except Exception as e:
return {**st, "final_answer": f"Error: {e}", "perf": {"error": str(e)}}
# Build graph
g = StateGraph(EnhancedAgentState)
g.add_node("router", router)
g.add_node("llama8", llama8_node)
g.add_node("llama70", llama70_node)
g.add_node("deepseek", deepseek_node)
g.add_node("search_enhanced", search_enhanced_node)
g.set_entry_point("router")
g.add_conditional_edges("router", lambda s: s["agent_type"], {
"llama8": "llama8",
"llama70": "llama70",
"deepseek": "deepseek",
"search_enhanced": "search_enhanced"
})
for node in ["llama8", "llama70", "deepseek", "search_enhanced"]:
g.add_edge(node, END)
return g.compile(checkpointer=MemorySaver())
def process_query(self, q: str) -> str:
"""Process a query through the enhanced multi-LLM system."""
state = {
"messages": [HumanMessage(content=q)],
"query": q,
"agent_type": "",
"final_answer": "",
"perf": {},
"agno_resp": "",
"tools_used": [],
"reasoning": "",
"similar_questions": []
}
cfg = {"configurable": {"thread_id": f"enhanced_qa_{hash(q)}"}}
try:
out = self.graph.invoke(state, cfg)
answer = out.get("final_answer", "").strip()
# Ensure we don't return the question as the answer
if answer == q or answer.startswith(q):
return "Information not available"
return answer if answer else "No answer generated"
except Exception as e:
return f"Error processing query: {e}"
def load_metadata_from_jsonl(self, jsonl_file_path: str) -> int:
"""Load question metadata from JSONL file into vector database"""
success_count = 0
try:
with open(jsonl_file_path, 'r', encoding='utf-8') as file:
for line_num, line in enumerate(file, 1):
try:
data = json.loads(line.strip())
if self.vector_db.insert_question_data(data):
success_count += 1
if line_num % 10 == 0:
print(f"Processed {line_num} records, {success_count} successful")
except json.JSONDecodeError as e:
print(f"JSON decode error on line {line_num}: {e}")
except Exception as e:
print(f"Error processing line {line_num}: {e}")
except FileNotFoundError:
print(f"File not found: {jsonl_file_path}")
print(f"Loaded {success_count} questions into vector database")
return success_count
def build_graph(provider: str | None = None) -> StateGraph:
"""Build and return the graph for the enhanced agent system."""
return HybridLangGraphMultiLLMSystem(provider or "groq").graph
if __name__ == "__main__":
# Initialize and test the system
system = HybridLangGraphMultiLLMSystem()
# Load metadata if available
if os.path.exists("metadata.jsonl"):
system.load_metadata_from_jsonl("metadata.jsonl")
# Test queries
test_questions = [
"How many studio albums were published by Mercedes Sosa between 2000 and 2009?",
"What is 25 multiplied by 17?",
"Find information about artificial intelligence on Wikipedia"
]
for question in test_questions:
print(f"Question: {question}")
answer = system.process_query(question)
print(f"Answer: {answer}")
print("-" * 50)