|
""" Enhanced Multi-LLM Agent Evaluation Runner with Agno Integration""" |
|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from langchain_core.messages import HumanMessage |
|
|
|
|
|
try: |
|
from veryfinal import ( |
|
build_graph, |
|
UnifiedAgnoEnhancedSystem, |
|
AgnoEnhancedAgentSystem, |
|
AgnoEnhancedModelManager |
|
) |
|
VERYFINAL_AVAILABLE = True |
|
except ImportError as e: |
|
print(f"Error importing from veryfinal.py: {e}") |
|
VERYFINAL_AVAILABLE = False |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
class EnhancedMultiLLMAgent: |
|
"""A multi-provider Agno agent with NVIDIA + open-source model integration.""" |
|
def __init__(self): |
|
print("Enhanced Multi-LLM Agent with Agno Integration initialized.") |
|
|
|
if not VERYFINAL_AVAILABLE: |
|
print("Error: veryfinal.py not properly imported") |
|
self.system = None |
|
self.graph = None |
|
return |
|
|
|
try: |
|
|
|
self.system = UnifiedAgnoEnhancedSystem() |
|
self.graph = self.system.graph |
|
|
|
|
|
if self.system.agno_system: |
|
info = self.system.get_system_info() |
|
print(f"System initialized with {info.get('total_models', 0)} models") |
|
if info.get('nvidia_available'): |
|
print("β
NVIDIA NIM models available") |
|
print(f"Active agents: {info.get('active_agents', [])}") |
|
|
|
print("Enhanced Agno Multi-LLM System built successfully.") |
|
except Exception as e: |
|
print(f"Error building enhanced system: {e}") |
|
self.graph = None |
|
self.system = None |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Agent received question: {question[:100]}...") |
|
|
|
if self.system is None: |
|
return "Error: Agent not properly initialized" |
|
|
|
try: |
|
|
|
answer = self.system.process_query(question) |
|
|
|
|
|
if not answer or answer == question or len(answer.strip()) == 0: |
|
return "Information not available" |
|
|
|
|
|
answer = answer.strip() |
|
|
|
|
|
if "FINAL ANSWER:" in answer: |
|
answer = answer.split("FINAL ANSWER:")[-1].strip() |
|
|
|
return answer |
|
|
|
except Exception as e: |
|
error_msg = f"Error: {str(e)}" |
|
print(error_msg) |
|
return error_msg |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
"""Fetch questions, run enhanced Agno agent, and submit answers.""" |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = EnhancedMultiLLMAgent() |
|
if agent.system is None: |
|
return "Error: Failed to initialize enhanced agent properly", None |
|
except Exception as e: |
|
print(f"Error instantiating agent: {e}") |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available" |
|
print(f"Agent code URL: {agent_code}") |
|
|
|
|
|
print(f"Fetching questions from: {questions_url}") |
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
print("Fetched questions list is empty.") |
|
return "Fetched questions list is empty or invalid format.", None |
|
print(f"Fetched {len(questions_data)} questions.") |
|
except Exception as e: |
|
print(f"Error fetching questions: {e}") |
|
return f"Error fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
print(f"Running Enhanced Agno Multi-LLM agent on {len(questions_data)} questions...") |
|
|
|
for i, item in enumerate(questions_data): |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
|
|
if not task_id or question_text is None: |
|
print(f"Skipping item with missing task_id or question: {item}") |
|
continue |
|
|
|
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}") |
|
|
|
try: |
|
submitted_answer = agent(question_text) |
|
|
|
|
|
if submitted_answer == question_text or submitted_answer.startswith(question_text): |
|
submitted_answer = "Information not available" |
|
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, |
|
"Submitted Answer": submitted_answer[:200] + "..." if len(submitted_answer) > 200 else submitted_answer |
|
}) |
|
except Exception as e: |
|
error_msg = f"AGENT ERROR: {e}" |
|
print(f"Error running agent on task {task_id}: {e}") |
|
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, |
|
"Submitted Answer": error_msg |
|
}) |
|
|
|
if not answers_payload: |
|
print("Agent did not produce any answers to submit.") |
|
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
status_update = f"Enhanced Agno Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." |
|
print(status_update) |
|
|
|
|
|
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") |
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
final_status = ( |
|
f"Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Overall Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'No message received.')}" |
|
) |
|
print("Submission successful.") |
|
results_df = pd.DataFrame(results_log) |
|
return final_status, results_df |
|
except Exception as e: |
|
status_message = f"Submission Failed: {e}" |
|
print(status_message) |
|
results_df = pd.DataFrame(results_log) |
|
return status_message, results_df |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Enhanced Multi-LLM Agent with Agno + NVIDIA Integration") |
|
gr.Markdown( |
|
""" |
|
**Instructions:** |
|
1. Log in to your Hugging Face account using the button below. |
|
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. |
|
|
|
**Enhanced Agent Features:** |
|
- **NVIDIA NIM Models**: Enterprise-grade optimized models for maximum accuracy |
|
- **Open-Source Models**: Groq, Ollama, Together AI, Anyscale, Hugging Face |
|
- **Specialized Agents**: Enterprise research, advanced math, coding, fast response |
|
- **Intelligent Routing**: Automatically selects best model/agent for each task |
|
- **Advanced Tools**: DuckDuckGo search, Wikipedia, calculator, reasoning tools |
|
- **Agno Framework**: Professional agent framework with memory and tool integration |
|
|
|
**Available Model Providers:** |
|
- **NVIDIA NIM**: meta/llama3-70b-instruct, meta/codellama-70b-instruct, etc. |
|
- **Groq (Free)**: llama3-70b-8192, llama3-8b-8192, mixtral-8x7b-32768 |
|
- **Ollama (Local)**: llama3, mistral, phi3, codellama, gemma, qwen |
|
- **Together AI**: Meta-Llama models, Mistral, Qwen |
|
- **Anyscale**: Enterprise hosting for open-source models |
|
- **Hugging Face**: Direct model access |
|
|
|
**Routing Examples:** |
|
- Enterprise: "Enterprise analysis of quantum computing" β NVIDIA NIM |
|
- Math: "Calculate 25 Γ 17" β Advanced Math Agent |
|
- Code: "Write Python factorial function" β Advanced Coding Agent |
|
- Research: "Find Mercedes Sosa discography" β Enterprise Research Agent |
|
- Quick: "Capital of France?" β Fast Response Agent |
|
|
|
**Setup Requirements:** |
|
- NVIDIA_API_KEY for enterprise models (optional) |
|
- GROQ_API_KEY for free tier models |
|
- Other API keys optional for additional providers |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
|
|
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") |
|
|
|
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("\n" + "-"*30 + " Enhanced Agno Multi-LLM Agent Starting " + "-"*30) |
|
|
|
|
|
if VERYFINAL_AVAILABLE: |
|
try: |
|
test_system = UnifiedAgnoEnhancedSystem() |
|
info = test_system.get_system_info() |
|
print(f"β
System ready with {info.get('total_models', 0)} models") |
|
print(f"π Model breakdown: {len(info.get('model_breakdown', {}).get('nvidia_models', []))} NVIDIA, " |
|
f"{len(info.get('model_breakdown', {}).get('groq_models', []))} Groq, " |
|
f"{len(info.get('model_breakdown', {}).get('ollama_models', []))} Ollama") |
|
except Exception as e: |
|
print(f"β οΈ System initialization warning: {e}") |
|
else: |
|
print("β veryfinal.py not properly imported") |
|
|
|
demo.launch(debug=True, share=False) |
|
|