|
import os, json, time, random |
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings |
|
from langchain_groq import ChatGroq |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_nvidia_ai_endpoints import ChatNVIDIA |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
from langchain_community.document_loaders import JSONLoader |
|
from langgraph.prebuilt import create_react_agent |
|
from langgraph.checkpoint.memory import MemorySaver |
|
from langchain_core.rate_limiters import InMemoryRateLimiter |
|
|
|
|
|
groq_rate_limiter = InMemoryRateLimiter( |
|
requests_per_second=0.5, |
|
check_every_n_seconds=0.1, |
|
max_bucket_size=10 |
|
) |
|
|
|
google_rate_limiter = InMemoryRateLimiter( |
|
requests_per_second=0.33, |
|
check_every_n_seconds=0.1, |
|
max_bucket_size=10 |
|
) |
|
|
|
nvidia_rate_limiter = InMemoryRateLimiter( |
|
requests_per_second=0.25, |
|
check_every_n_seconds=0.1, |
|
max_bucket_size=10 |
|
) |
|
|
|
|
|
@tool |
|
def multiply(a: int | float, b: int | float) -> int | float: |
|
"""Multiply two numbers. |
|
Args: |
|
a: first int | float |
|
b: second int | float |
|
""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int | float, b: int | float) -> int | float: |
|
"""Add two numbers. |
|
|
|
Args: |
|
a: first int | float |
|
b: second int | float |
|
""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int | float , b: int | float) -> int | float: |
|
"""Subtract two numbers. |
|
|
|
Args: |
|
a: first int | float |
|
b: second int | float |
|
""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int | float, b: int | float) -> int | float: |
|
"""Divide two numbers. |
|
|
|
Args: |
|
a: first int | float |
|
b: second int | float |
|
""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int | float, b: int | float) -> int | float: |
|
"""Get the modulus of two numbers. |
|
|
|
Args: |
|
a: first int | float |
|
b: second int | float |
|
""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search the wikipedia for a query and return the first paragraph |
|
args: |
|
query: the query to search for |
|
""" |
|
try: |
|
loader = WikipediaLoader(query=query, load_max_docs=1) |
|
data = loader.load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'\n{doc.page_content}\n' |
|
for doc in data |
|
]) |
|
return formatted_search_docs |
|
except Exception as e: |
|
return f"Wikipedia search failed: {str(e)}" |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
|
|
Args: |
|
query: The search query. |
|
""" |
|
try: |
|
|
|
time.sleep(random.uniform(1, 3)) |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'\n{doc.get("content", "")}\n' |
|
for doc in search_docs |
|
]) |
|
return formatted_search_docs |
|
except Exception as e: |
|
return f"Web search failed: {str(e)}" |
|
|
|
@tool |
|
def arxiv_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query. |
|
""" |
|
try: |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'\n{doc.page_content[:1000]}\n' |
|
for doc in search_docs |
|
]) |
|
return formatted_search_docs |
|
except Exception as e: |
|
return f"ArXiv search failed: {str(e)}" |
|
|
|
|
|
jq_schema = """ |
|
{ |
|
page_content: .Question, |
|
metadata: { |
|
task_id: .task_id, |
|
Level: .Level, |
|
Final_answer: ."Final answer", |
|
file_name: .file_name, |
|
Steps: .["Annotator Metadata"].Steps, |
|
Number_of_steps: .["Annotator Metadata"]["Number of steps"], |
|
How_long: .["Annotator Metadata"]["How long did this take?"], |
|
Tools: .["Annotator Metadata"].Tools, |
|
Number_of_tools: .["Annotator Metadata"]["Number of tools"] |
|
} |
|
} |
|
""" |
|
|
|
|
|
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False) |
|
json_docs = json_loader.load() |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200) |
|
json_chunks = text_splitter.split_documents(json_docs) |
|
|
|
|
|
database = FAISS.from_documents(json_chunks, NVIDIAEmbeddings()) |
|
|
|
|
|
def create_rate_limited_llm(provider="groq"): |
|
"""Create rate-limited LLM based on provider""" |
|
|
|
if provider == "groq": |
|
return ChatGroq( |
|
model="llama-3.3-70b-versatile", |
|
temperature=0, |
|
api_key=os.getenv("GROQ_API_KEY"), |
|
rate_limiter=groq_rate_limiter, |
|
max_retries=2, |
|
request_timeout=60 |
|
) |
|
elif provider == "google": |
|
return ChatGoogleGenerativeAI( |
|
model="gemini-2.0-flash-exp", |
|
temperature=0, |
|
api_key=os.getenv("GOOGLE_API_KEY"), |
|
rate_limiter=google_rate_limiter, |
|
max_retries=2, |
|
timeout=60 |
|
) |
|
elif provider == "nvidia": |
|
return ChatNVIDIA( |
|
model="meta/llama-3.1-405b-instruct", |
|
temperature=0, |
|
api_key=os.getenv("NVIDIA_API_KEY"), |
|
rate_limiter=nvidia_rate_limiter, |
|
max_retries=2 |
|
) |
|
|
|
|
|
def create_llm_with_smart_fallbacks(): |
|
"""Create LLM with intelligent fallback and rate limiting""" |
|
|
|
|
|
primary_llm = create_rate_limited_llm("groq") |
|
|
|
|
|
fallback_1 = create_rate_limited_llm("google") |
|
|
|
|
|
fallback_2 = create_rate_limited_llm("nvidia") |
|
|
|
|
|
llm_with_fallbacks = primary_llm.with_fallbacks([fallback_1, fallback_2]) |
|
|
|
return llm_with_fallbacks |
|
|
|
|
|
llm = create_llm_with_smart_fallbacks() |
|
|
|
|
|
retriever = database.as_retriever(search_type="similarity", search_kwargs={"k": 3}) |
|
|
|
retriever_tool = create_retriever_tool( |
|
retriever=retriever, |
|
name="question_search", |
|
description="Search for similar questions and their solutions from the knowledge base." |
|
) |
|
|
|
|
|
tools = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
wiki_search, |
|
web_search, |
|
arxiv_search, |
|
retriever_tool |
|
] |
|
|
|
|
|
memory = MemorySaver() |
|
|
|
|
|
agent_executor = create_react_agent( |
|
model=llm, |
|
tools=tools, |
|
checkpointer=memory |
|
) |
|
|
|
|
|
def robust_agent_run(query, thread_id="robust_conversation", max_retries=3): |
|
"""Run agent with error handling, rate limiting, and exponential backoff""" |
|
|
|
for attempt in range(max_retries): |
|
try: |
|
config = {"configurable": {"thread_id": f"{thread_id}_{attempt}"}} |
|
|
|
system_msg = SystemMessage(content='''You are a helpful assistant tasked with answering questions using a set of tools. |
|
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: |
|
FINAL ANSWER: [YOUR FINAL ANSWER]. |
|
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. |
|
Your answer should only start with "FINAL ANSWER: ", then follows with the answer.''') |
|
|
|
user_msg = HumanMessage(content=query) |
|
result = [] |
|
|
|
print(f"Attempt {attempt + 1}: Processing query...") |
|
|
|
for step in agent_executor.stream( |
|
{"messages": [system_msg, user_msg]}, |
|
config, |
|
stream_mode="values" |
|
): |
|
result = step["messages"] |
|
|
|
final_response = result[-1].content if result else "No response generated" |
|
print(f"Query processed successfully on attempt {attempt + 1}") |
|
return final_response |
|
|
|
except Exception as e: |
|
error_msg = str(e).lower() |
|
|
|
|
|
if any(keyword in error_msg for keyword in ['rate limit', 'too many requests', '429', 'quota exceeded']): |
|
wait_time = (2 ** attempt) + random.uniform(1, 3) |
|
print(f"Rate limit hit on attempt {attempt + 1}. Waiting {wait_time:.2f} seconds...") |
|
time.sleep(wait_time) |
|
|
|
if attempt == max_retries - 1: |
|
return f"Rate limit exceeded after {max_retries} attempts: {str(e)}" |
|
continue |
|
|
|
|
|
elif any(keyword in error_msg for keyword in ['api', 'connection', 'timeout', 'service unavailable']): |
|
wait_time = (2 ** attempt) + random.uniform(0.5, 1.5) |
|
print(f"API error on attempt {attempt + 1}. Retrying in {wait_time:.2f} seconds...") |
|
time.sleep(wait_time) |
|
|
|
if attempt == max_retries - 1: |
|
return f"API error after {max_retries} attempts: {str(e)}" |
|
continue |
|
|
|
else: |
|
|
|
return f"Error occurred: {str(e)}" |
|
|
|
return "Maximum retries exceeded" |
|
|
|
|
|
request_count = 0 |
|
last_request_time = time.time() |
|
|
|
def main(query: str) -> str: |
|
"""Main function to run the agent with request tracking""" |
|
global request_count, last_request_time |
|
|
|
current_time = time.time() |
|
|
|
|
|
if current_time - last_request_time > 60: |
|
request_count = 0 |
|
last_request_time = current_time |
|
|
|
request_count += 1 |
|
print(f"Processing request #{request_count}") |
|
|
|
|
|
if request_count > 1: |
|
time.sleep(random.uniform(2, 5)) |
|
|
|
return robust_agent_run(query) |
|
|
|
if __name__ == "__main__": |
|
|
|
result = main("What are the names of the US presidents who were assassinated?") |
|
print(result) |
|
|