josondev's picture
Update app.py
ee20f70 verified
raw
history blame
6.31 kB
""" Working Multi-LLM Agent Evaluation Runner"""
import os
import gradio as gr
import requests
import pandas as pd
from langchain_core.messages import HumanMessage
# Import from veryfinal.py
from veryfinal import UnifiedAgnoEnhancedSystem
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Working Agent Definition ---
class WorkingMultiLLMAgent:
"""A working multi-LLM agent that actually answers questions"""
def __init__(self):
print("Working Multi-LLM Agent initialized.")
try:
self.system = UnifiedAgnoEnhancedSystem()
print("βœ… Working system built successfully.")
except Exception as e:
print(f"❌ Error building system: {e}")
self.system = None
def __call__(self, question: str) -> str:
print(f"Processing: {question[:100]}...")
if self.system is None:
return "Error: System not initialized"
try:
answer = self.system.process_query(question)
# Validation
if not answer or answer == question or len(answer.strip()) == 0:
return "Information not available"
return answer.strip()
except Exception as e:
return f"Error: {str(e)}"
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Run evaluation with working agent"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Working Agent
try:
agent = WorkingMultiLLMAgent()
if agent.system is None:
return "Error: Failed to initialize working agent", None
except Exception as e:
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID"
# 2. Fetch Questions
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
return "No questions fetched", None
print(f"βœ… Fetched {len(questions_data)} questions")
except Exception as e:
return f"Error fetching questions: {e}", None
# 3. Process Questions
results_log = []
answers_payload = []
for i, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
print(f"Processing {i+1}/{len(questions_data)}: {task_id}")
try:
answer = agent(question_text)
# Prevent question repetition
if answer == question_text or answer.startswith(question_text):
answer = "Information not available"
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": answer[:200] + "..." if len(answer) > 200 else answer
})
except Exception as e:
error_msg = f"ERROR: {e}"
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
"Submitted Answer": error_msg
})
if not answers_payload:
return "No answers generated", pd.DataFrame(results_log)
# 4. Submit Results
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"βœ… Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'Success')}"
)
return final_status, pd.DataFrame(results_log)
except Exception as e:
return f"❌ Submission Failed: {e}", pd.DataFrame(results_log)
# --- Gradio Interface ---
with gr.Blocks() as demo:
gr.Markdown("# Working Multi-LLM Agent System")
gr.Markdown(
"""
**βœ… This is a WORKING system that will actually answer questions!**
**Features:**
- **Groq Llama-3 70B**: High-quality responses
- **Smart Routing**: Math, search, wiki, and general queries
- **Web Search**: Tavily integration for current information
- **Wikipedia**: Encyclopedic knowledge access
- **Robust Error Handling**: Fallbacks and validation
**Instructions:**
1. Log in with your Hugging Face account
2. Click 'Run Evaluation & Submit All Answers'
3. Wait for processing to complete
4. View your results and score
**Requirements:**
- GROQ_API_KEY in your environment variables
- TAVILY_API_KEY (optional, for web search)
"""
)
gr.LoginButton()
run_button = gr.Button("πŸš€ Run Evaluation & Submit All Answers", variant="primary")
status_output = gr.Textbox(label="Status", lines=5, interactive=False)
results_table = gr.DataFrame(label="Results", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("πŸš€ Starting Working Multi-LLM Agent System")
demo.launch(debug=True, share=False)