|
""" Working Multi-LLM Agent Evaluation Runner""" |
|
import os |
|
import gradio as gr |
|
import requests |
|
import pandas as pd |
|
from langchain_core.messages import HumanMessage |
|
|
|
|
|
from veryfinal import UnifiedAgnoEnhancedSystem |
|
|
|
|
|
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" |
|
|
|
|
|
class WorkingMultiLLMAgent: |
|
"""A working multi-LLM agent that actually answers questions""" |
|
def __init__(self): |
|
print("Working Multi-LLM Agent initialized.") |
|
try: |
|
self.system = UnifiedAgnoEnhancedSystem() |
|
print("β
Working system built successfully.") |
|
except Exception as e: |
|
print(f"β Error building system: {e}") |
|
self.system = None |
|
|
|
def __call__(self, question: str) -> str: |
|
print(f"Processing: {question[:100]}...") |
|
|
|
if self.system is None: |
|
return "Error: System not initialized" |
|
|
|
try: |
|
answer = self.system.process_query(question) |
|
|
|
|
|
if not answer or answer == question or len(answer.strip()) == 0: |
|
return "Information not available" |
|
|
|
return answer.strip() |
|
|
|
except Exception as e: |
|
return f"Error: {str(e)}" |
|
|
|
def run_and_submit_all(profile: gr.OAuthProfile | None): |
|
"""Run evaluation with working agent""" |
|
space_id = os.getenv("SPACE_ID") |
|
|
|
if profile: |
|
username = f"{profile.username}" |
|
print(f"User logged in: {username}") |
|
else: |
|
print("User not logged in.") |
|
return "Please Login to Hugging Face with the button.", None |
|
|
|
api_url = DEFAULT_API_URL |
|
questions_url = f"{api_url}/questions" |
|
submit_url = f"{api_url}/submit" |
|
|
|
|
|
try: |
|
agent = WorkingMultiLLMAgent() |
|
if agent.system is None: |
|
return "Error: Failed to initialize working agent", None |
|
except Exception as e: |
|
return f"Error initializing agent: {e}", None |
|
|
|
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID" |
|
|
|
|
|
try: |
|
response = requests.get(questions_url, timeout=15) |
|
response.raise_for_status() |
|
questions_data = response.json() |
|
if not questions_data: |
|
return "No questions fetched", None |
|
print(f"β
Fetched {len(questions_data)} questions") |
|
except Exception as e: |
|
return f"Error fetching questions: {e}", None |
|
|
|
|
|
results_log = [] |
|
answers_payload = [] |
|
|
|
for i, item in enumerate(questions_data): |
|
task_id = item.get("task_id") |
|
question_text = item.get("question") |
|
|
|
if not task_id or question_text is None: |
|
continue |
|
|
|
print(f"Processing {i+1}/{len(questions_data)}: {task_id}") |
|
|
|
try: |
|
answer = agent(question_text) |
|
|
|
|
|
if answer == question_text or answer.startswith(question_text): |
|
answer = "Information not available" |
|
|
|
answers_payload.append({"task_id": task_id, "submitted_answer": answer}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, |
|
"Submitted Answer": answer[:200] + "..." if len(answer) > 200 else answer |
|
}) |
|
except Exception as e: |
|
error_msg = f"ERROR: {e}" |
|
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg}) |
|
results_log.append({ |
|
"Task ID": task_id, |
|
"Question": question_text[:100] + "..." if len(question_text) > 100 else question_text, |
|
"Submitted Answer": error_msg |
|
}) |
|
|
|
if not answers_payload: |
|
return "No answers generated", pd.DataFrame(results_log) |
|
|
|
|
|
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} |
|
|
|
try: |
|
response = requests.post(submit_url, json=submission_data, timeout=60) |
|
response.raise_for_status() |
|
result_data = response.json() |
|
|
|
final_status = ( |
|
f"β
Submission Successful!\n" |
|
f"User: {result_data.get('username')}\n" |
|
f"Score: {result_data.get('score', 'N/A')}% " |
|
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" |
|
f"Message: {result_data.get('message', 'Success')}" |
|
) |
|
|
|
return final_status, pd.DataFrame(results_log) |
|
except Exception as e: |
|
return f"β Submission Failed: {e}", pd.DataFrame(results_log) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("# Working Multi-LLM Agent System") |
|
gr.Markdown( |
|
""" |
|
**β
This is a WORKING system that will actually answer questions!** |
|
|
|
**Features:** |
|
- **Groq Llama-3 70B**: High-quality responses |
|
- **Smart Routing**: Math, search, wiki, and general queries |
|
- **Web Search**: Tavily integration for current information |
|
- **Wikipedia**: Encyclopedic knowledge access |
|
- **Robust Error Handling**: Fallbacks and validation |
|
|
|
**Instructions:** |
|
1. Log in with your Hugging Face account |
|
2. Click 'Run Evaluation & Submit All Answers' |
|
3. Wait for processing to complete |
|
4. View your results and score |
|
|
|
**Requirements:** |
|
- GROQ_API_KEY in your environment variables |
|
- TAVILY_API_KEY (optional, for web search) |
|
""" |
|
) |
|
|
|
gr.LoginButton() |
|
run_button = gr.Button("π Run Evaluation & Submit All Answers", variant="primary") |
|
status_output = gr.Textbox(label="Status", lines=5, interactive=False) |
|
results_table = gr.DataFrame(label="Results", wrap=True) |
|
|
|
run_button.click( |
|
fn=run_and_submit_all, |
|
outputs=[status_output, results_table] |
|
) |
|
|
|
if __name__ == "__main__": |
|
print("π Starting Working Multi-LLM Agent System") |
|
demo.launch(debug=True, share=False) |
|
|