Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
""" Enhanced
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
@@ -10,76 +10,54 @@ from veryfinal import build_graph
|
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
# --- Enhanced Agent Definition ---
|
13 |
-
class
|
14 |
-
"""
|
15 |
def __init__(self):
|
16 |
-
print("Enhanced
|
17 |
try:
|
18 |
self.graph = build_graph(provider="groq")
|
19 |
-
print("
|
20 |
except Exception as e:
|
21 |
print(f"Error building graph: {e}")
|
22 |
self.graph = None
|
23 |
|
24 |
def __call__(self, question: str) -> str:
|
25 |
-
print(f"
|
26 |
|
27 |
if self.graph is None:
|
28 |
return "Error: Agent not properly initialized"
|
29 |
|
30 |
-
# Create complete state structure
|
31 |
-
state = {
|
32 |
-
"messages": [HumanMessage(content=question)],
|
33 |
-
"query": question, # Critical: this must match the question
|
34 |
-
"agent_type": "",
|
35 |
-
"final_answer": "",
|
36 |
-
"perf": {},
|
37 |
-
"agno_resp": ""
|
38 |
-
}
|
39 |
-
# Always provide the required config with thread_id
|
40 |
-
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
|
41 |
-
|
42 |
try:
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
#
|
46 |
-
if
|
47 |
-
|
48 |
-
if
|
49 |
-
answer =
|
50 |
-
# Fallback to messages if final_answer is empty
|
51 |
-
elif 'messages' in result and result['messages']:
|
52 |
-
last_message = result['messages'][-1]
|
53 |
-
if hasattr(last_message, 'content'):
|
54 |
-
answer = last_message.content
|
55 |
-
else:
|
56 |
-
answer = str(last_message)
|
57 |
else:
|
58 |
-
answer = str(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
else:
|
60 |
-
answer = str(result)
|
61 |
-
|
62 |
-
# Clean the answer
|
63 |
-
answer = answer.strip()
|
64 |
-
|
65 |
-
# CRITICAL FIX: Ensure we don't return the question as answer
|
66 |
-
if answer == question or answer.startswith(question):
|
67 |
return "Information not available"
|
68 |
-
|
69 |
-
# Extract final answer if present
|
70 |
-
if "FINAL ANSWER:" in answer:
|
71 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
72 |
-
|
73 |
-
# Additional validation
|
74 |
-
if not answer or len(answer.strip()) == 0:
|
75 |
-
return "No answer generated"
|
76 |
-
|
77 |
-
return answer
|
78 |
|
79 |
except Exception as e:
|
80 |
-
|
81 |
-
|
82 |
-
return error_msg
|
83 |
|
84 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
85 |
"""Fetch questions, run agent, and submit answers."""
|
@@ -98,7 +76,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
98 |
|
99 |
# 1. Instantiate Agent
|
100 |
try:
|
101 |
-
agent =
|
102 |
if agent.graph is None:
|
103 |
return "Error: Failed to initialize agent properly", None
|
104 |
except Exception as e:
|
@@ -106,7 +84,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
106 |
return f"Error initializing agent: {e}", None
|
107 |
|
108 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
|
109 |
-
print(f"Agent code URL: {agent_code}")
|
110 |
|
111 |
# 2. Fetch Questions
|
112 |
print(f"Fetching questions from: {questions_url}")
|
@@ -115,35 +92,27 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
115 |
response.raise_for_status()
|
116 |
questions_data = response.json()
|
117 |
if not questions_data:
|
118 |
-
print("Fetched questions list is empty.")
|
119 |
return "Fetched questions list is empty or invalid format.", None
|
120 |
print(f"Fetched {len(questions_data)} questions.")
|
121 |
except Exception as e:
|
122 |
-
print(f"Error fetching questions: {e}")
|
123 |
return f"Error fetching questions: {e}", None
|
124 |
|
125 |
-
# 3. Run
|
126 |
results_log = []
|
127 |
answers_payload = []
|
128 |
-
print(f"Running Enhanced
|
129 |
|
130 |
for i, item in enumerate(questions_data):
|
131 |
task_id = item.get("task_id")
|
132 |
question_text = item.get("question")
|
133 |
|
134 |
if not task_id or question_text is None:
|
135 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
136 |
continue
|
137 |
|
138 |
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
139 |
|
140 |
try:
|
141 |
submitted_answer = agent(question_text)
|
142 |
-
|
143 |
-
# Additional validation to prevent question repetition
|
144 |
-
if submitted_answer == question_text or submitted_answer.startswith(question_text):
|
145 |
-
submitted_answer = "Information not available"
|
146 |
-
|
147 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
148 |
results_log.append({
|
149 |
"Task ID": task_id,
|
@@ -152,7 +121,6 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
152 |
})
|
153 |
except Exception as e:
|
154 |
error_msg = f"AGENT ERROR: {e}"
|
155 |
-
print(f"Error running agent on task {task_id}: {e}")
|
156 |
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
|
157 |
results_log.append({
|
158 |
"Task ID": task_id,
|
@@ -161,16 +129,12 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
161 |
})
|
162 |
|
163 |
if not answers_payload:
|
164 |
-
print("Agent did not produce any answers to submit.")
|
165 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
166 |
|
167 |
-
# 4.
|
168 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
# 5. Submit
|
173 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
174 |
try:
|
175 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
176 |
response.raise_for_status()
|
@@ -182,30 +146,30 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
182 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
183 |
f"Message: {result_data.get('message', 'No message received.')}"
|
184 |
)
|
185 |
-
|
186 |
-
results_df = pd.DataFrame(results_log)
|
187 |
-
return final_status, results_df
|
188 |
except Exception as e:
|
189 |
-
|
190 |
-
print(status_message)
|
191 |
-
results_df = pd.DataFrame(results_log)
|
192 |
-
return status_message, results_df
|
193 |
|
194 |
-
# ---
|
195 |
with gr.Blocks() as demo:
|
196 |
-
gr.Markdown("# Enhanced
|
197 |
gr.Markdown(
|
198 |
"""
|
199 |
-
**
|
200 |
-
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
-
**
|
204 |
-
-
|
205 |
-
-
|
206 |
-
-
|
207 |
-
-
|
208 |
-
-
|
209 |
"""
|
210 |
)
|
211 |
|
@@ -220,5 +184,5 @@ with gr.Blocks() as demo:
|
|
220 |
)
|
221 |
|
222 |
if __name__ == "__main__":
|
223 |
-
print("\n" + "-"*30 + " Enhanced
|
224 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
""" Enhanced LangGraph Agent Evaluation Runner - Final Version"""
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
# --- Enhanced Agent Definition ---
|
13 |
+
class EnhancedLangGraphAgent:
|
14 |
+
"""Enhanced LangGraph agent with proper response handling."""
|
15 |
def __init__(self):
|
16 |
+
print("Enhanced LangGraph Agent initialized.")
|
17 |
try:
|
18 |
self.graph = build_graph(provider="groq")
|
19 |
+
print("LangGraph built successfully.")
|
20 |
except Exception as e:
|
21 |
print(f"Error building graph: {e}")
|
22 |
self.graph = None
|
23 |
|
24 |
def __call__(self, question: str) -> str:
|
25 |
+
print(f"Processing: {question[:100]}...")
|
26 |
|
27 |
if self.graph is None:
|
28 |
return "Error: Agent not properly initialized"
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
try:
|
31 |
+
# Create messages and config
|
32 |
+
messages = [HumanMessage(content=question)]
|
33 |
+
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
|
34 |
+
|
35 |
+
# Invoke the graph
|
36 |
+
result = self.graph.invoke({"messages": messages}, config)
|
37 |
|
38 |
+
# Extract the final answer
|
39 |
+
if result and "messages" in result and result["messages"]:
|
40 |
+
final_message = result["messages"][-1]
|
41 |
+
if hasattr(final_message, 'content'):
|
42 |
+
answer = final_message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
else:
|
44 |
+
answer = str(final_message)
|
45 |
+
|
46 |
+
# Clean up the answer
|
47 |
+
if "FINAL ANSWER:" in answer:
|
48 |
+
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
49 |
+
|
50 |
+
# Validate the answer
|
51 |
+
if not answer or answer == question or len(answer.strip()) == 0:
|
52 |
+
return "Information not available"
|
53 |
+
|
54 |
+
return answer.strip()
|
55 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
return "Information not available"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
except Exception as e:
|
59 |
+
print(f"Error processing question: {e}")
|
60 |
+
return f"Error: {str(e)}"
|
|
|
61 |
|
62 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
63 |
"""Fetch questions, run agent, and submit answers."""
|
|
|
76 |
|
77 |
# 1. Instantiate Agent
|
78 |
try:
|
79 |
+
agent = EnhancedLangGraphAgent()
|
80 |
if agent.graph is None:
|
81 |
return "Error: Failed to initialize agent properly", None
|
82 |
except Exception as e:
|
|
|
84 |
return f"Error initializing agent: {e}", None
|
85 |
|
86 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
|
|
|
87 |
|
88 |
# 2. Fetch Questions
|
89 |
print(f"Fetching questions from: {questions_url}")
|
|
|
92 |
response.raise_for_status()
|
93 |
questions_data = response.json()
|
94 |
if not questions_data:
|
|
|
95 |
return "Fetched questions list is empty or invalid format.", None
|
96 |
print(f"Fetched {len(questions_data)} questions.")
|
97 |
except Exception as e:
|
|
|
98 |
return f"Error fetching questions: {e}", None
|
99 |
|
100 |
+
# 3. Run Agent
|
101 |
results_log = []
|
102 |
answers_payload = []
|
103 |
+
print(f"Running Enhanced LangGraph agent on {len(questions_data)} questions...")
|
104 |
|
105 |
for i, item in enumerate(questions_data):
|
106 |
task_id = item.get("task_id")
|
107 |
question_text = item.get("question")
|
108 |
|
109 |
if not task_id or question_text is None:
|
|
|
110 |
continue
|
111 |
|
112 |
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
113 |
|
114 |
try:
|
115 |
submitted_answer = agent(question_text)
|
|
|
|
|
|
|
|
|
|
|
116 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
117 |
results_log.append({
|
118 |
"Task ID": task_id,
|
|
|
121 |
})
|
122 |
except Exception as e:
|
123 |
error_msg = f"AGENT ERROR: {e}"
|
|
|
124 |
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
|
125 |
results_log.append({
|
126 |
"Task ID": task_id,
|
|
|
129 |
})
|
130 |
|
131 |
if not answers_payload:
|
|
|
132 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
133 |
|
134 |
+
# 4. Submit
|
135 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
136 |
+
print(f"Submitting {len(answers_payload)} answers...")
|
137 |
+
|
|
|
|
|
|
|
138 |
try:
|
139 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
140 |
response.raise_for_status()
|
|
|
146 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
147 |
f"Message: {result_data.get('message', 'No message received.')}"
|
148 |
)
|
149 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
150 |
except Exception as e:
|
151 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
152 |
|
153 |
+
# --- Gradio Interface ---
|
154 |
with gr.Blocks() as demo:
|
155 |
+
gr.Markdown("# Enhanced LangGraph Agent - Final Version")
|
156 |
gr.Markdown(
|
157 |
"""
|
158 |
+
**Features:**
|
159 |
+
- β
Proper LangGraph structure with tool integration
|
160 |
+
- β
Multi-LLM support (Groq, Google, HuggingFace)
|
161 |
+
- β
Enhanced search capabilities (Wikipedia, Tavily, ArXiv)
|
162 |
+
- β
Mathematical tools for calculations
|
163 |
+
- β
Vector store integration for similar questions
|
164 |
+
- β
Proper response formatting and validation
|
165 |
+
- β
Error handling and fallback mechanisms
|
166 |
|
167 |
+
**Tools Available:**
|
168 |
+
- Mathematical operations (add, subtract, multiply, divide, modulus)
|
169 |
+
- Wikipedia search for encyclopedic information
|
170 |
+
- Web search via Tavily for current information
|
171 |
+
- ArXiv search for academic papers
|
172 |
+
- Vector similarity search for related questions
|
173 |
"""
|
174 |
)
|
175 |
|
|
|
184 |
)
|
185 |
|
186 |
if __name__ == "__main__":
|
187 |
+
print("\n" + "-"*30 + " Enhanced LangGraph Agent Starting " + "-"*30)
|
188 |
demo.launch(debug=True, share=False)
|