Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,58 @@
|
|
1 |
-
""" Enhanced
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
-
from veryfinal import build_graph
|
8 |
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
# --- Enhanced Agent Definition ---
|
13 |
-
class
|
14 |
-
"""
|
15 |
def __init__(self):
|
16 |
-
print("Enhanced
|
17 |
try:
|
18 |
-
self.
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
except Exception as e:
|
21 |
print(f"Error building graph: {e}")
|
22 |
self.graph = None
|
|
|
23 |
|
24 |
def __call__(self, question: str) -> str:
|
25 |
-
print(f"
|
26 |
|
27 |
-
if self.graph is None:
|
28 |
return "Error: Agent not properly initialized"
|
29 |
|
30 |
try:
|
31 |
-
#
|
32 |
-
|
33 |
-
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
# Extract the final answer
|
39 |
-
if result and "messages" in result and result["messages"]:
|
40 |
-
final_message = result["messages"][-1]
|
41 |
-
if hasattr(final_message, 'content'):
|
42 |
-
answer = final_message.content
|
43 |
-
else:
|
44 |
-
answer = str(final_message)
|
45 |
-
|
46 |
-
# Clean up the answer
|
47 |
-
if "FINAL ANSWER:" in answer:
|
48 |
-
answer = answer.split("FINAL ANSWER:")[-1].strip()
|
49 |
-
|
50 |
-
# Validate the answer
|
51 |
-
if not answer or answer == question or len(answer.strip()) == 0:
|
52 |
-
return "Information not available"
|
53 |
-
|
54 |
-
return answer.strip()
|
55 |
-
else:
|
56 |
return "Information not available"
|
57 |
|
|
|
|
|
58 |
except Exception as e:
|
59 |
-
|
60 |
-
|
|
|
61 |
|
62 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
63 |
-
"""Fetch questions, run agent, and submit answers."""
|
64 |
space_id = os.getenv("SPACE_ID")
|
65 |
|
66 |
if profile:
|
@@ -76,7 +68,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
76 |
|
77 |
# 1. Instantiate Agent
|
78 |
try:
|
79 |
-
agent =
|
80 |
if agent.graph is None:
|
81 |
return "Error: Failed to initialize agent properly", None
|
82 |
except Exception as e:
|
@@ -84,6 +76,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
84 |
return f"Error initializing agent: {e}", None
|
85 |
|
86 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
|
|
|
87 |
|
88 |
# 2. Fetch Questions
|
89 |
print(f"Fetching questions from: {questions_url}")
|
@@ -92,27 +85,35 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
92 |
response.raise_for_status()
|
93 |
questions_data = response.json()
|
94 |
if not questions_data:
|
|
|
95 |
return "Fetched questions list is empty or invalid format.", None
|
96 |
print(f"Fetched {len(questions_data)} questions.")
|
97 |
except Exception as e:
|
|
|
98 |
return f"Error fetching questions: {e}", None
|
99 |
|
100 |
-
# 3. Run Agent
|
101 |
results_log = []
|
102 |
answers_payload = []
|
103 |
-
print(f"Running Enhanced
|
104 |
|
105 |
for i, item in enumerate(questions_data):
|
106 |
task_id = item.get("task_id")
|
107 |
question_text = item.get("question")
|
108 |
|
109 |
if not task_id or question_text is None:
|
|
|
110 |
continue
|
111 |
|
112 |
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
113 |
|
114 |
try:
|
115 |
submitted_answer = agent(question_text)
|
|
|
|
|
|
|
|
|
|
|
116 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
117 |
results_log.append({
|
118 |
"Task ID": task_id,
|
@@ -121,6 +122,7 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
121 |
})
|
122 |
except Exception as e:
|
123 |
error_msg = f"AGENT ERROR: {e}"
|
|
|
124 |
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
|
125 |
results_log.append({
|
126 |
"Task ID": task_id,
|
@@ -129,12 +131,16 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
129 |
})
|
130 |
|
131 |
if not answers_payload:
|
|
|
132 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
133 |
|
134 |
-
# 4.
|
135 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
138 |
try:
|
139 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
140 |
response.raise_for_status()
|
@@ -146,35 +152,51 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
146 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
147 |
f"Message: {result_data.get('message', 'No message received.')}"
|
148 |
)
|
149 |
-
|
|
|
|
|
150 |
except Exception as e:
|
151 |
-
|
|
|
|
|
|
|
152 |
|
153 |
-
# --- Gradio Interface ---
|
154 |
with gr.Blocks() as demo:
|
155 |
-
gr.Markdown("# Enhanced
|
156 |
gr.Markdown(
|
157 |
"""
|
158 |
-
**
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
-
|
164 |
-
-
|
165 |
-
-
|
|
|
|
|
|
|
|
|
166 |
|
167 |
-
**
|
168 |
-
-
|
169 |
-
-
|
170 |
-
-
|
171 |
-
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
173 |
"""
|
174 |
)
|
175 |
|
176 |
gr.LoginButton()
|
|
|
177 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
|
|
178 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
179 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
180 |
|
@@ -184,5 +206,5 @@ with gr.Blocks() as demo:
|
|
184 |
)
|
185 |
|
186 |
if __name__ == "__main__":
|
187 |
-
print("\n" + "-"*30 + " Enhanced
|
188 |
demo.launch(debug=True, share=False)
|
|
|
1 |
+
""" Enhanced Multi-LLM Agent Evaluation Runner with Vector Database Integration"""
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
+
from veryfinal import build_graph, HybridLangGraphMultiLLMSystem
|
8 |
|
9 |
# --- Constants ---
|
10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
11 |
|
12 |
# --- Enhanced Agent Definition ---
|
13 |
+
class EnhancedMultiLLMAgent:
|
14 |
+
"""A multi-provider LangGraph agent with vector database integration."""
|
15 |
def __init__(self):
|
16 |
+
print("Enhanced Multi-LLM Agent with Vector Database initialized.")
|
17 |
try:
|
18 |
+
self.system = HybridLangGraphMultiLLMSystem(provider="groq")
|
19 |
+
self.graph = self.system.graph
|
20 |
+
|
21 |
+
# Load metadata if available
|
22 |
+
if os.path.exists("metadata.jsonl"):
|
23 |
+
print("Loading question metadata...")
|
24 |
+
count = self.system.load_metadata_from_jsonl("metadata.jsonl")
|
25 |
+
print(f"Loaded {count} questions into vector database")
|
26 |
+
|
27 |
+
print("Enhanced Multi-LLM Graph built successfully.")
|
28 |
except Exception as e:
|
29 |
print(f"Error building graph: {e}")
|
30 |
self.graph = None
|
31 |
+
self.system = None
|
32 |
|
33 |
def __call__(self, question: str) -> str:
|
34 |
+
print(f"Agent received question: {question[:100]}...")
|
35 |
|
36 |
+
if self.graph is None or self.system is None:
|
37 |
return "Error: Agent not properly initialized"
|
38 |
|
39 |
try:
|
40 |
+
# Use the enhanced system's process_query method
|
41 |
+
answer = self.system.process_query(question)
|
|
|
42 |
|
43 |
+
# Additional validation
|
44 |
+
if not answer or answer == question or len(answer.strip()) == 0:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
return "Information not available"
|
46 |
|
47 |
+
return answer.strip()
|
48 |
+
|
49 |
except Exception as e:
|
50 |
+
error_msg = f"Error: {str(e)}"
|
51 |
+
print(error_msg)
|
52 |
+
return error_msg
|
53 |
|
54 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
55 |
+
"""Fetch questions, run enhanced agent, and submit answers."""
|
56 |
space_id = os.getenv("SPACE_ID")
|
57 |
|
58 |
if profile:
|
|
|
68 |
|
69 |
# 1. Instantiate Agent
|
70 |
try:
|
71 |
+
agent = EnhancedMultiLLMAgent()
|
72 |
if agent.graph is None:
|
73 |
return "Error: Failed to initialize agent properly", None
|
74 |
except Exception as e:
|
|
|
76 |
return f"Error initializing agent: {e}", None
|
77 |
|
78 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "No space ID available"
|
79 |
+
print(f"Agent code URL: {agent_code}")
|
80 |
|
81 |
# 2. Fetch Questions
|
82 |
print(f"Fetching questions from: {questions_url}")
|
|
|
85 |
response.raise_for_status()
|
86 |
questions_data = response.json()
|
87 |
if not questions_data:
|
88 |
+
print("Fetched questions list is empty.")
|
89 |
return "Fetched questions list is empty or invalid format.", None
|
90 |
print(f"Fetched {len(questions_data)} questions.")
|
91 |
except Exception as e:
|
92 |
+
print(f"Error fetching questions: {e}")
|
93 |
return f"Error fetching questions: {e}", None
|
94 |
|
95 |
+
# 3. Run Enhanced Agent
|
96 |
results_log = []
|
97 |
answers_payload = []
|
98 |
+
print(f"Running Enhanced Multi-LLM agent with vector database on {len(questions_data)} questions...")
|
99 |
|
100 |
for i, item in enumerate(questions_data):
|
101 |
task_id = item.get("task_id")
|
102 |
question_text = item.get("question")
|
103 |
|
104 |
if not task_id or question_text is None:
|
105 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
106 |
continue
|
107 |
|
108 |
print(f"Processing question {i+1}/{len(questions_data)}: {task_id}")
|
109 |
|
110 |
try:
|
111 |
submitted_answer = agent(question_text)
|
112 |
+
|
113 |
+
# Additional validation to prevent question repetition
|
114 |
+
if submitted_answer == question_text or submitted_answer.startswith(question_text):
|
115 |
+
submitted_answer = "Information not available"
|
116 |
+
|
117 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
118 |
results_log.append({
|
119 |
"Task ID": task_id,
|
|
|
122 |
})
|
123 |
except Exception as e:
|
124 |
error_msg = f"AGENT ERROR: {e}"
|
125 |
+
print(f"Error running agent on task {task_id}: {e}")
|
126 |
answers_payload.append({"task_id": task_id, "submitted_answer": error_msg})
|
127 |
results_log.append({
|
128 |
"Task ID": task_id,
|
|
|
131 |
})
|
132 |
|
133 |
if not answers_payload:
|
134 |
+
print("Agent did not produce any answers to submit.")
|
135 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
136 |
|
137 |
+
# 4. Prepare Submission
|
138 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
139 |
+
status_update = f"Enhanced Multi-LLM Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
140 |
+
print(status_update)
|
141 |
+
|
142 |
+
# 5. Submit
|
143 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
144 |
try:
|
145 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
146 |
response.raise_for_status()
|
|
|
152 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
153 |
f"Message: {result_data.get('message', 'No message received.')}"
|
154 |
)
|
155 |
+
print("Submission successful.")
|
156 |
+
results_df = pd.DataFrame(results_log)
|
157 |
+
return final_status, results_df
|
158 |
except Exception as e:
|
159 |
+
status_message = f"Submission Failed: {e}"
|
160 |
+
print(status_message)
|
161 |
+
results_df = pd.DataFrame(results_log)
|
162 |
+
return status_message, results_df
|
163 |
|
164 |
+
# --- Build Gradio Interface ---
|
165 |
with gr.Blocks() as demo:
|
166 |
+
gr.Markdown("# Enhanced Multi-LLM Agent with Vector Database Integration")
|
167 |
gr.Markdown(
|
168 |
"""
|
169 |
+
**Instructions:**
|
170 |
+
1. Log in to your Hugging Face account using the button below.
|
171 |
+
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
172 |
+
|
173 |
+
**Enhanced Agent Features:**
|
174 |
+
- **Multi-LLM Support**: Groq (Llama-3 8B/70B, DeepSeek)
|
175 |
+
- **Vector Database Integration**: FAISS + Supabase for similar question retrieval
|
176 |
+
- **Intelligent Routing**: Automatically selects best provider based on query complexity
|
177 |
+
- **Enhanced Tools**: Mathematical operations, web search, Wikipedia integration
|
178 |
+
- **Question-Answering**: Optimized for evaluation tasks with proper formatting
|
179 |
+
- **Similar Questions Context**: Uses vector similarity to provide relevant context
|
180 |
+
- **Error Handling**: Robust fallback mechanisms and comprehensive logging
|
181 |
|
182 |
+
**Routing Examples:**
|
183 |
+
- Math: "What is 25 multiplied by 17?" → Llama-3 70B
|
184 |
+
- Search: "Find information about Mercedes Sosa" → Search-Enhanced
|
185 |
+
- Complex: "Analyze quantum computing principles" → DeepSeek
|
186 |
+
- Simple: "What is the capital of France?" → Llama-3 8B
|
187 |
+
|
188 |
+
**Vector Database Features:**
|
189 |
+
- Automatic loading of metadata.jsonl if present
|
190 |
+
- Similar question retrieval for enhanced context
|
191 |
+
- Supabase integration for persistent storage
|
192 |
+
- FAISS for fast vector similarity search
|
193 |
"""
|
194 |
)
|
195 |
|
196 |
gr.LoginButton()
|
197 |
+
|
198 |
run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary")
|
199 |
+
|
200 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
201 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
202 |
|
|
|
206 |
)
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
+
print("\n" + "-"*30 + " Enhanced Multi-LLM Agent with Vector DB Starting " + "-"*30)
|
210 |
demo.launch(debug=True, share=False)
|