Update veryfinal.py
Browse files- veryfinal.py +227 -343
veryfinal.py
CHANGED
@@ -1,26 +1,30 @@
|
|
|
|
1 |
import os, time, random
|
2 |
from dotenv import load_dotenv
|
3 |
from typing import List, Dict, Any, TypedDict, Annotated
|
4 |
import operator
|
5 |
|
6 |
-
# Load environment variables
|
7 |
-
load_dotenv()
|
8 |
-
|
9 |
# LangGraph imports
|
10 |
-
from langgraph.graph import StateGraph,
|
11 |
-
from langgraph.prebuilt import
|
|
|
12 |
from langgraph.checkpoint.memory import MemorySaver
|
13 |
|
14 |
# LangChain imports
|
15 |
-
from langchain_core.messages import
|
16 |
from langchain_core.tools import tool
|
17 |
from langchain_groq import ChatGroq
|
18 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
19 |
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
20 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
from tavily import TavilyClient
|
24 |
|
25 |
# Advanced Rate Limiter (SILENT)
|
26 |
class AdvancedRateLimiter:
|
@@ -41,385 +45,265 @@ class AdvancedRateLimiter:
|
|
41 |
# Record this request
|
42 |
self.request_times.append(current_time)
|
43 |
|
44 |
-
# Initialize rate limiters
|
45 |
groq_limiter = AdvancedRateLimiter(requests_per_minute=30)
|
46 |
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2)
|
47 |
-
nvidia_limiter = AdvancedRateLimiter(requests_per_minute=5)
|
48 |
-
tavily_limiter = AdvancedRateLimiter(requests_per_minute=50)
|
49 |
-
|
50 |
-
# Initialize LangChain rate limiters for NVIDIA
|
51 |
-
nvidia_rate_limiter = InMemoryRateLimiter(
|
52 |
-
requests_per_second=0.083, # 5 requests per minute
|
53 |
-
check_every_n_seconds=0.1,
|
54 |
-
max_bucket_size=5
|
55 |
-
)
|
56 |
-
|
57 |
-
# Initialize LLMs with best free models
|
58 |
-
groq_llm = ChatGroq(
|
59 |
-
model="llama-3.3-70b-versatile",
|
60 |
-
api_key=os.getenv("GROQ_API_KEY"),
|
61 |
-
temperature=0
|
62 |
-
)
|
63 |
-
|
64 |
-
gemini_llm = ChatGoogleGenerativeAI(
|
65 |
-
model="gemini-2.0-flash-thinking-exp",
|
66 |
-
api_key=os.getenv("GOOGLE_API_KEY"),
|
67 |
-
temperature=0
|
68 |
-
)
|
69 |
-
|
70 |
-
# Best NVIDIA models based on search results
|
71 |
-
nvidia_general_llm = ChatNVIDIA(
|
72 |
-
model="meta/llama3-70b-instruct", # Best general model from NVIDIA
|
73 |
-
api_key=os.getenv("NVIDIA_API_KEY"),
|
74 |
-
temperature=0,
|
75 |
-
max_tokens=4000,
|
76 |
-
rate_limiter=nvidia_rate_limiter
|
77 |
-
)
|
78 |
-
|
79 |
-
nvidia_code_llm = ChatNVIDIA(
|
80 |
-
model="meta/codellama-70b", # Best code generation model from NVIDIA
|
81 |
-
api_key=os.getenv("NVIDIA_API_KEY"),
|
82 |
-
temperature=0,
|
83 |
-
max_tokens=4000,
|
84 |
-
rate_limiter=nvidia_rate_limiter
|
85 |
-
)
|
86 |
-
|
87 |
-
nvidia_math_llm = ChatNVIDIA(
|
88 |
-
model="mistralai/mixtral-8x22b-instruct-v0.1", # Best reasoning model from NVIDIA
|
89 |
-
api_key=os.getenv("NVIDIA_API_KEY"),
|
90 |
-
temperature=0,
|
91 |
-
max_tokens=4000,
|
92 |
-
rate_limiter=nvidia_rate_limiter
|
93 |
-
)
|
94 |
-
|
95 |
-
# Initialize Tavily client
|
96 |
-
tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))
|
97 |
-
|
98 |
-
# Define State
|
99 |
-
class AgentState(TypedDict):
|
100 |
-
messages: Annotated[List[HumanMessage | AIMessage], operator.add]
|
101 |
-
query: str
|
102 |
-
agent_type: str
|
103 |
-
final_answer: str
|
104 |
|
105 |
# Custom Tools
|
106 |
@tool
|
107 |
-
def
|
108 |
-
"""Multiply two numbers
|
|
|
|
|
|
|
|
|
109 |
return a * b
|
110 |
|
111 |
@tool
|
112 |
-
def
|
113 |
-
"""Add two numbers
|
|
|
|
|
|
|
|
|
|
|
114 |
return a + b
|
115 |
|
116 |
@tool
|
117 |
-
def
|
118 |
-
"""Subtract two numbers
|
|
|
|
|
|
|
|
|
|
|
119 |
return a - b
|
120 |
|
121 |
@tool
|
122 |
-
def
|
123 |
-
"""Divide two numbers
|
|
|
|
|
|
|
|
|
|
|
124 |
if b == 0:
|
125 |
raise ValueError("Cannot divide by zero.")
|
126 |
return a / b
|
127 |
|
128 |
@tool
|
129 |
-
def
|
130 |
-
"""
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
include_answer=False
|
138 |
-
)
|
139 |
-
|
140 |
-
# Format results
|
141 |
-
results = []
|
142 |
-
for result in response.get('results', []):
|
143 |
-
results.append(f"Title: {result.get('title', '')}\nContent: {result.get('content', '')}")
|
144 |
-
|
145 |
-
return "\n\n---\n\n".join(results)
|
146 |
-
|
147 |
-
except Exception as e:
|
148 |
-
return f"Tavily search failed: {str(e)}"
|
149 |
|
150 |
@tool
|
151 |
-
def
|
152 |
-
"""Search Wikipedia for
|
|
|
|
|
|
|
153 |
try:
|
154 |
time.sleep(random.uniform(1, 3))
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
159 |
except Exception as e:
|
160 |
return f"Wikipedia search failed: {str(e)}"
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
coordinator_tools = [tavily_search_tool, wiki_search_tool]
|
166 |
-
|
167 |
-
# Node functions
|
168 |
-
def router_node(state: AgentState) -> AgentState:
|
169 |
-
"""Route queries to appropriate agent type"""
|
170 |
-
query = state["query"].lower()
|
171 |
-
|
172 |
-
if any(word in query for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide', 'compute']):
|
173 |
-
agent_type = "math"
|
174 |
-
elif any(word in query for word in ['code', 'program', 'python', 'javascript', 'function', 'algorithm']):
|
175 |
-
agent_type = "code"
|
176 |
-
elif any(word in query for word in ['search', 'find', 'research', 'what is', 'who is', 'when', 'where']):
|
177 |
-
agent_type = "research"
|
178 |
-
else:
|
179 |
-
agent_type = "coordinator"
|
180 |
-
|
181 |
-
return {**state, "agent_type": agent_type}
|
182 |
-
|
183 |
-
def math_agent_node(state: AgentState) -> AgentState:
|
184 |
-
"""Mathematical specialist agent using NVIDIA Mixtral"""
|
185 |
-
nvidia_limiter.wait_if_needed()
|
186 |
-
|
187 |
-
system_message = SystemMessage(content="""You are a mathematical specialist with access to calculation tools.
|
188 |
-
Use the appropriate math tools for calculations.
|
189 |
-
Show your work step by step.
|
190 |
-
Always provide precise numerical answers.
|
191 |
-
Finish with: FINAL ANSWER: [numerical result]""")
|
192 |
-
|
193 |
-
# Create math agent with NVIDIA's best reasoning model
|
194 |
-
math_agent = create_react_agent(nvidia_math_llm, math_tools)
|
195 |
-
|
196 |
-
# Process query
|
197 |
-
messages = [system_message, HumanMessage(content=state["query"])]
|
198 |
-
config = {"configurable": {"thread_id": "math_thread"}}
|
199 |
|
|
|
|
|
200 |
try:
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
except Exception as e:
|
210 |
-
|
211 |
-
return {
|
212 |
-
**state,
|
213 |
-
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
214 |
-
"final_answer": error_msg
|
215 |
-
}
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
system_message = SystemMessage(content="""You are an expert coding AI specialist.
|
222 |
-
Generate clean, efficient, and well-documented code.
|
223 |
-
Explain your code solutions clearly.
|
224 |
-
Always provide working code examples.
|
225 |
-
Finish with: FINAL ANSWER: [your code solution]""")
|
226 |
-
|
227 |
-
# Create code agent with NVIDIA's best code model
|
228 |
-
code_agent = create_react_agent(nvidia_code_llm, [])
|
229 |
-
|
230 |
-
# Process query
|
231 |
-
messages = [system_message, HumanMessage(content=state["query"])]
|
232 |
-
config = {"configurable": {"thread_id": "code_thread"}}
|
233 |
|
|
|
|
|
234 |
try:
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
except Exception as e:
|
244 |
-
|
245 |
-
return {
|
246 |
-
**state,
|
247 |
-
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
248 |
-
"final_answer": error_msg
|
249 |
-
}
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
system_message = SystemMessage(content="""You are a research specialist with access to web search and Wikipedia.
|
256 |
-
Use appropriate search tools to gather comprehensive information.
|
257 |
-
Always cite sources and provide well-researched answers.
|
258 |
-
Synthesize information from multiple sources when possible.
|
259 |
-
Finish with: FINAL ANSWER: [your researched answer]""")
|
260 |
-
|
261 |
-
# Create research agent
|
262 |
-
research_agent = create_react_agent(gemini_llm, research_tools)
|
263 |
-
|
264 |
-
# Process query
|
265 |
-
messages = [system_message, HumanMessage(content=state["query"])]
|
266 |
-
config = {"configurable": {"thread_id": "research_thread"}}
|
267 |
-
|
268 |
try:
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
}
|
277 |
-
|
278 |
-
error_msg = f"Research agent error: {str(e)}"
|
279 |
-
return {
|
280 |
-
**state,
|
281 |
-
"messages": state["messages"] + [AIMessage(content=error_msg)],
|
282 |
-
"final_answer": error_msg
|
283 |
-
}
|
284 |
-
|
285 |
-
def coordinator_agent_node(state: AgentState) -> AgentState:
|
286 |
-
"""Coordinator agent using NVIDIA Llama3"""
|
287 |
-
nvidia_limiter.wait_if_needed()
|
288 |
-
|
289 |
-
system_message = SystemMessage(content="""You are the main coordinator agent.
|
290 |
-
Analyze queries and provide comprehensive responses.
|
291 |
-
Use search tools for factual information when needed.
|
292 |
-
Always finish with: FINAL ANSWER: [your final answer]""")
|
293 |
-
|
294 |
-
# Create coordinator agent with NVIDIA's best general model
|
295 |
-
coordinator_agent = create_react_agent(nvidia_general_llm, coordinator_tools)
|
296 |
-
|
297 |
-
# Process query
|
298 |
-
messages = [system_message, HumanMessage(content=state["query"])]
|
299 |
-
config = {"configurable": {"thread_id": "coordinator_thread"}}
|
300 |
-
|
301 |
-
try:
|
302 |
-
result = coordinator_agent.invoke({"messages": messages}, config)
|
303 |
-
final_message = result["messages"][-1].content
|
304 |
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
except Exception as e:
|
311 |
-
|
312 |
-
return
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
-
#
|
319 |
-
|
320 |
-
|
321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
329 |
else:
|
330 |
-
|
331 |
-
|
332 |
-
# LangGraph Multi-Agent System
|
333 |
-
class LangGraphMultiAgentSystem:
|
334 |
-
def __init__(self):
|
335 |
-
self.request_count = 0
|
336 |
-
self.last_request_time = time.time()
|
337 |
-
self.graph = self._create_graph()
|
338 |
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
"router",
|
354 |
-
route_agent,
|
355 |
-
{
|
356 |
-
"math_agent": "math_agent",
|
357 |
-
"code_agent": "code_agent",
|
358 |
-
"research_agent": "research_agent",
|
359 |
-
"coordinator_agent": "coordinator_agent"
|
360 |
-
}
|
361 |
-
)
|
362 |
-
|
363 |
-
# All agents end the workflow
|
364 |
-
workflow.add_edge("math_agent", END)
|
365 |
-
workflow.add_edge("code_agent", END)
|
366 |
-
workflow.add_edge("research_agent", END)
|
367 |
-
workflow.add_edge("coordinator_agent", END)
|
368 |
-
|
369 |
-
# Compile the graph
|
370 |
-
memory = MemorySaver()
|
371 |
-
return workflow.compile(checkpointer=memory)
|
372 |
|
373 |
-
def
|
374 |
-
"""
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
time.sleep(random.uniform(3, 10))
|
386 |
-
|
387 |
-
# Initial state
|
388 |
-
initial_state = {
|
389 |
-
"messages": [HumanMessage(content=query)],
|
390 |
-
"query": query,
|
391 |
-
"agent_type": "",
|
392 |
-
"final_answer": ""
|
393 |
-
}
|
394 |
-
|
395 |
-
# Configuration for the graph
|
396 |
-
config = {"configurable": {"thread_id": f"thread_{self.request_count}"}}
|
397 |
|
398 |
-
|
399 |
-
# Run the graph
|
400 |
-
final_state = self.graph.invoke(initial_state, config)
|
401 |
-
return final_state.get("final_answer", "No response generated")
|
402 |
-
|
403 |
-
except Exception as e:
|
404 |
-
return f"Error: {str(e)}"
|
405 |
|
406 |
-
#
|
407 |
-
|
408 |
-
""
|
409 |
-
|
410 |
-
|
|
|
|
|
|
|
|
|
411 |
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
if "FINAL ANSWER:" in full_response:
|
417 |
-
final_answer = full_response.split("FINAL ANSWER:")[-1].strip()
|
418 |
-
return final_answer
|
419 |
-
else:
|
420 |
-
return full_response.strip()
|
421 |
|
|
|
422 |
if __name__ == "__main__":
|
423 |
-
|
424 |
-
|
425 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LangGraph Agent with FAISS Vector Store and Custom Tools"""
|
2 |
import os, time, random
|
3 |
from dotenv import load_dotenv
|
4 |
from typing import List, Dict, Any, TypedDict, Annotated
|
5 |
import operator
|
6 |
|
|
|
|
|
|
|
7 |
# LangGraph imports
|
8 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
9 |
+
from langgraph.prebuilt import tools_condition
|
10 |
+
from langgraph.prebuilt import ToolNode
|
11 |
from langgraph.checkpoint.memory import MemorySaver
|
12 |
|
13 |
# LangChain imports
|
14 |
+
from langchain_core.messages import SystemMessage, HumanMessage
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain_groq import ChatGroq
|
17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
18 |
from langchain_nvidia_ai_endpoints import ChatNVIDIA
|
19 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
20 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
21 |
+
from langchain_community.vectorstores import FAISS
|
22 |
+
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
23 |
+
from langchain.tools.retriever import create_retriever_tool
|
24 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
25 |
+
from langchain_community.document_loaders import JSONLoader
|
26 |
|
27 |
+
load_dotenv()
|
|
|
28 |
|
29 |
# Advanced Rate Limiter (SILENT)
|
30 |
class AdvancedRateLimiter:
|
|
|
45 |
# Record this request
|
46 |
self.request_times.append(current_time)
|
47 |
|
48 |
+
# Initialize rate limiters
|
49 |
groq_limiter = AdvancedRateLimiter(requests_per_minute=30)
|
50 |
gemini_limiter = AdvancedRateLimiter(requests_per_minute=2)
|
51 |
+
nvidia_limiter = AdvancedRateLimiter(requests_per_minute=5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
# Custom Tools
|
54 |
@tool
|
55 |
+
def multiply(a: int, b: int) -> int:
|
56 |
+
"""Multiply two numbers.
|
57 |
+
Args:
|
58 |
+
a: first int
|
59 |
+
b: second int
|
60 |
+
"""
|
61 |
return a * b
|
62 |
|
63 |
@tool
|
64 |
+
def add(a: int, b: int) -> int:
|
65 |
+
"""Add two numbers.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
a: first int
|
69 |
+
b: second int
|
70 |
+
"""
|
71 |
return a + b
|
72 |
|
73 |
@tool
|
74 |
+
def subtract(a: int, b: int) -> int:
|
75 |
+
"""Subtract two numbers.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
a: first int
|
79 |
+
b: second int
|
80 |
+
"""
|
81 |
return a - b
|
82 |
|
83 |
@tool
|
84 |
+
def divide(a: int, b: int) -> float:
|
85 |
+
"""Divide two numbers.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
a: first int
|
89 |
+
b: second int
|
90 |
+
"""
|
91 |
if b == 0:
|
92 |
raise ValueError("Cannot divide by zero.")
|
93 |
return a / b
|
94 |
|
95 |
@tool
|
96 |
+
def modulus(a: int, b: int) -> int:
|
97 |
+
"""Get the modulus of two numbers.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
a: first int
|
101 |
+
b: second int
|
102 |
+
"""
|
103 |
+
return a % b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
@tool
|
106 |
+
def wiki_search(query: str) -> str:
|
107 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
query: The search query."""
|
111 |
try:
|
112 |
time.sleep(random.uniform(1, 3))
|
113 |
+
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
114 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
115 |
+
[
|
116 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
117 |
+
for doc in search_docs
|
118 |
+
])
|
119 |
+
return formatted_search_docs
|
120 |
except Exception as e:
|
121 |
return f"Wikipedia search failed: {str(e)}"
|
122 |
|
123 |
+
@tool
|
124 |
+
def web_search(query: str) -> str:
|
125 |
+
"""Search Tavily for a query and return maximum 3 results.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
Args:
|
128 |
+
query: The search query."""
|
129 |
try:
|
130 |
+
time.sleep(random.uniform(2, 5))
|
131 |
+
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
132 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
133 |
+
[
|
134 |
+
f'<Document source="{doc.get("url", "")}" />\n{doc.get("content", "")}\n</Document>'
|
135 |
+
for doc in search_docs
|
136 |
+
])
|
137 |
+
return formatted_search_docs
|
138 |
except Exception as e:
|
139 |
+
return f"Web search failed: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
@tool
|
142 |
+
def arvix_search(query: str) -> str:
|
143 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
+
Args:
|
146 |
+
query: The search query."""
|
147 |
try:
|
148 |
+
time.sleep(random.uniform(1, 4))
|
149 |
+
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
150 |
+
formatted_search_docs = "\n\n---\n\n".join(
|
151 |
+
[
|
152 |
+
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
|
153 |
+
for doc in search_docs
|
154 |
+
])
|
155 |
+
return formatted_search_docs
|
156 |
except Exception as e:
|
157 |
+
return f"ArXiv search failed: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
+
# Load and process JSONL data for FAISS vector store
|
160 |
+
def setup_faiss_vector_store():
|
161 |
+
"""Setup FAISS vector database from JSONL metadata"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
try:
|
163 |
+
jq_schema = """
|
164 |
+
{
|
165 |
+
page_content: .Question,
|
166 |
+
metadata: {
|
167 |
+
task_id: .task_id,
|
168 |
+
Level: .Level,
|
169 |
+
Final_answer: ."Final answer",
|
170 |
+
file_name: .file_name,
|
171 |
+
Steps: .["Annotator Metadata"].Steps,
|
172 |
+
Number_of_steps: .["Annotator Metadata"]["Number of steps"],
|
173 |
+
How_long: .["Annotator Metadata"]["How long did this take?"],
|
174 |
+
Tools: .["Annotator Metadata"].Tools,
|
175 |
+
Number_of_tools: .["Annotator Metadata"]["Number of tools"]
|
176 |
+
}
|
177 |
}
|
178 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
|
180 |
+
# Load documents
|
181 |
+
json_loader = JSONLoader(file_path="metadata.jsonl", jq_schema=jq_schema, json_lines=True, text_content=False)
|
182 |
+
json_docs = json_loader.load()
|
183 |
+
|
184 |
+
# Split documents
|
185 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=200)
|
186 |
+
json_chunks = text_splitter.split_documents(json_docs)
|
187 |
+
|
188 |
+
# Create FAISS vector store
|
189 |
+
embeddings = NVIDIAEmbeddings(
|
190 |
+
model="nvidia/nv-embedqa-e5-v5",
|
191 |
+
api_key=os.getenv("NVIDIA_API_KEY")
|
192 |
+
)
|
193 |
+
vector_store = FAISS.from_documents(json_chunks, embeddings)
|
194 |
+
|
195 |
+
return vector_store
|
196 |
except Exception as e:
|
197 |
+
print(f"FAISS vector store setup failed: {e}")
|
198 |
+
return None
|
199 |
+
|
200 |
+
# Load system prompt
|
201 |
+
try:
|
202 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
203 |
+
system_prompt = f.read()
|
204 |
+
except FileNotFoundError:
|
205 |
+
system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools.
|
206 |
+
Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
|
207 |
+
FINAL ANSWER: [YOUR FINAL ANSWER].
|
208 |
+
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
209 |
+
Your answer should only start with "FINAL ANSWER: ", then follows with the answer."""
|
210 |
+
|
211 |
+
# System message
|
212 |
+
sys_msg = SystemMessage(content=system_prompt)
|
213 |
|
214 |
+
# Setup FAISS vector store and retriever
|
215 |
+
vector_store = setup_faiss_vector_store()
|
216 |
+
if vector_store:
|
217 |
+
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
|
218 |
+
retriever_tool = create_retriever_tool(
|
219 |
+
retriever=retriever,
|
220 |
+
name="Question_Search",
|
221 |
+
description="A tool to retrieve similar questions from a vector store.",
|
222 |
+
)
|
223 |
+
else:
|
224 |
+
retriever_tool = None
|
225 |
+
|
226 |
+
# All tools
|
227 |
+
all_tools = [
|
228 |
+
multiply,
|
229 |
+
add,
|
230 |
+
subtract,
|
231 |
+
divide,
|
232 |
+
modulus,
|
233 |
+
wiki_search,
|
234 |
+
web_search,
|
235 |
+
arvix_search,
|
236 |
+
]
|
237 |
+
|
238 |
+
if retriever_tool:
|
239 |
+
all_tools.append(retriever_tool)
|
240 |
+
|
241 |
+
# Build graph function
|
242 |
+
def build_graph(provider: str = "groq"):
|
243 |
+
"""Build the LangGraph with rate limiting"""
|
244 |
|
245 |
+
# Initialize LLMs with best free models
|
246 |
+
if provider == "google":
|
247 |
+
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-thinking-exp", temperature=0)
|
248 |
+
elif provider == "groq":
|
249 |
+
llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
|
250 |
+
elif provider == "nvidia":
|
251 |
+
llm = ChatNVIDIA(model="meta/llama-3.1-70b-instruct", temperature=0)
|
252 |
else:
|
253 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'nvidia'.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
+
# Bind tools to LLM
|
256 |
+
llm_with_tools = llm.bind_tools(all_tools)
|
257 |
+
|
258 |
+
# Node functions
|
259 |
+
def assistant(state: MessagesState):
|
260 |
+
"""Assistant node with rate limiting"""
|
261 |
+
if provider == "groq":
|
262 |
+
groq_limiter.wait_if_needed()
|
263 |
+
elif provider == "google":
|
264 |
+
gemini_limiter.wait_if_needed()
|
265 |
+
elif provider == "nvidia":
|
266 |
+
nvidia_limiter.wait_if_needed()
|
267 |
+
|
268 |
+
return {"messages": [llm_with_tools.invoke(state["messages"])]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
+
def retriever_node(state: MessagesState):
|
271 |
+
"""Retriever node"""
|
272 |
+
if vector_store and len(state["messages"]) > 0:
|
273 |
+
try:
|
274 |
+
similar_questions = vector_store.similarity_search(state["messages"][-1].content, k=1)
|
275 |
+
if similar_questions:
|
276 |
+
example_msg = HumanMessage(
|
277 |
+
content=f"Here I provide a similar question and answer for reference: \n\n{similar_questions[0].page_content}",
|
278 |
+
)
|
279 |
+
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
280 |
+
except Exception as e:
|
281 |
+
print(f"Retriever error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
+
return {"messages": [sys_msg] + state["messages"]}
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
+
# Build graph
|
286 |
+
builder = StateGraph(MessagesState)
|
287 |
+
builder.add_node("retriever", retriever_node)
|
288 |
+
builder.add_node("assistant", assistant)
|
289 |
+
builder.add_node("tools", ToolNode(all_tools))
|
290 |
+
builder.add_edge(START, "retriever")
|
291 |
+
builder.add_edge("retriever", "assistant")
|
292 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
293 |
+
builder.add_edge("tools", "assistant")
|
294 |
|
295 |
+
# Compile graph with memory
|
296 |
+
memory = MemorySaver()
|
297 |
+
return builder.compile(checkpointer=memory)
|
|
|
|
|
|
|
|
|
|
|
|
|
298 |
|
299 |
+
# Test
|
300 |
if __name__ == "__main__":
|
301 |
+
question = "What are the names of the US presidents who were assassinated?"
|
302 |
+
# Build the graph
|
303 |
+
graph = build_graph(provider="groq")
|
304 |
+
# Run the graph
|
305 |
+
messages = [HumanMessage(content=question)]
|
306 |
+
config = {"configurable": {"thread_id": "test_thread"}}
|
307 |
+
result = graph.invoke({"messages": messages}, config)
|
308 |
+
for m in result["messages"]:
|
309 |
+
m.pretty_print()
|