Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,42 @@
|
|
1 |
""" Basic Agent Evaluation Runner"""
|
2 |
import os
|
|
|
3 |
import gradio as gr
|
4 |
import requests
|
5 |
import pandas as pd
|
6 |
from langchain_core.messages import HumanMessage
|
7 |
-
from
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
# (Keep Constants as is)
|
12 |
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
15 |
# --- Basic Agent Definition ---
|
16 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
17 |
-
|
18 |
-
|
19 |
class BasicAgent:
|
20 |
"""A langgraph agent."""
|
21 |
def __init__(self):
|
22 |
print("BasicAgent initialized.")
|
23 |
-
|
|
|
24 |
def __call__(self, question: str) -> str:
|
25 |
print(f"Agent received question: {question}")
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
|
38 |
-
def run_and_submit_all(
|
39 |
"""
|
40 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
41 |
and displays the results.
|
@@ -54,13 +55,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
54 |
questions_url = f"{api_url}/questions"
|
55 |
submit_url = f"{api_url}/submit"
|
56 |
|
57 |
-
# 1. Instantiate Agent
|
58 |
try:
|
59 |
agent = BasicAgent()
|
60 |
except Exception as e:
|
61 |
print(f"Error instantiating agent: {e}")
|
62 |
return f"Error initializing agent: {e}", None
|
63 |
-
|
64 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
65 |
print(agent_code)
|
66 |
|
@@ -77,10 +78,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
77 |
except requests.exceptions.RequestException as e:
|
78 |
print(f"Error fetching questions: {e}")
|
79 |
return f"Error fetching questions: {e}", None
|
80 |
-
except requests.exceptions.JSONDecodeError as e:
|
81 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
82 |
-
print(f"Response text: {response.text[:500]}")
|
83 |
-
return f"Error decoding server response for questions: {e}", None
|
84 |
except Exception as e:
|
85 |
print(f"An unexpected error occurred fetching questions: {e}")
|
86 |
return f"An unexpected error occurred fetching questions: {e}", None
|
@@ -128,47 +125,27 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
128 |
print("Submission successful.")
|
129 |
results_df = pd.DataFrame(results_log)
|
130 |
return final_status, results_df
|
131 |
-
except requests.exceptions.HTTPError as e:
|
132 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
133 |
-
try:
|
134 |
-
error_json = e.response.json()
|
135 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
136 |
-
except requests.exceptions.JSONDecodeError:
|
137 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
138 |
-
status_message = f"Submission Failed: {error_detail}"
|
139 |
-
print(status_message)
|
140 |
-
results_df = pd.DataFrame(results_log)
|
141 |
-
return status_message, results_df
|
142 |
-
except requests.exceptions.Timeout:
|
143 |
-
status_message = "Submission Failed: The request timed out."
|
144 |
-
print(status_message)
|
145 |
-
results_df = pd.DataFrame(results_log)
|
146 |
-
return status_message, results_df
|
147 |
-
except requests.exceptions.RequestException as e:
|
148 |
-
status_message = f"Submission Failed: Network error - {e}"
|
149 |
-
print(status_message)
|
150 |
-
results_df = pd.DataFrame(results_log)
|
151 |
-
return status_message, results_df
|
152 |
except Exception as e:
|
153 |
-
status_message = f"
|
154 |
print(status_message)
|
155 |
results_df = pd.DataFrame(results_log)
|
156 |
return status_message, results_df
|
157 |
|
158 |
-
|
159 |
# --- Build Gradio Interface using Blocks ---
|
160 |
with gr.Blocks() as demo:
|
161 |
-
gr.Markdown("#
|
162 |
gr.Markdown(
|
163 |
"""
|
164 |
**Instructions:**
|
165 |
-
1.
|
166 |
-
2.
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
172 |
"""
|
173 |
)
|
174 |
|
@@ -177,7 +154,6 @@ with gr.Blocks() as demo:
|
|
177 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
178 |
|
179 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
180 |
-
# Removed max_rows=10 from DataFrame constructor
|
181 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
182 |
|
183 |
run_button.click(
|
@@ -187,24 +163,4 @@ with gr.Blocks() as demo:
|
|
187 |
|
188 |
if __name__ == "__main__":
|
189 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
190 |
-
|
191 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
192 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
193 |
-
|
194 |
-
if space_host_startup:
|
195 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
196 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
197 |
-
else:
|
198 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
199 |
-
|
200 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
201 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
202 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
203 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
204 |
-
else:
|
205 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
206 |
-
|
207 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
208 |
-
|
209 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
210 |
-
demo.launch(debug=True, share=False)
|
|
|
1 |
""" Basic Agent Evaluation Runner"""
|
2 |
import os
|
3 |
+
import inspect
|
4 |
import gradio as gr
|
5 |
import requests
|
6 |
import pandas as pd
|
7 |
from langchain_core.messages import HumanMessage
|
8 |
+
from agent import build_graph
|
9 |
|
|
|
|
|
|
|
10 |
# --- Constants ---
|
11 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
12 |
|
13 |
# --- Basic Agent Definition ---
|
|
|
|
|
|
|
14 |
class BasicAgent:
|
15 |
"""A langgraph agent."""
|
16 |
def __init__(self):
|
17 |
print("BasicAgent initialized.")
|
18 |
+
self.graph = build_graph(provider="groq") # Using Groq as default
|
19 |
+
|
20 |
def __call__(self, question: str) -> str:
|
21 |
print(f"Agent received question: {question}")
|
22 |
+
# Wrap the question in a HumanMessage from langchain_core
|
23 |
+
messages = [HumanMessage(content=question)]
|
24 |
+
config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
|
25 |
|
26 |
+
try:
|
27 |
+
result = self.graph.invoke({"messages": messages}, config)
|
28 |
+
answer = result['messages'][-1].content
|
29 |
+
|
30 |
+
# Extract final answer if present
|
31 |
+
if "FINAL ANSWER:" in answer:
|
32 |
+
return answer.split("FINAL ANSWER:")[-1].strip()
|
33 |
+
else:
|
34 |
+
return answer.strip()
|
35 |
+
|
36 |
+
except Exception as e:
|
37 |
+
return f"Error: {str(e)}"
|
38 |
|
39 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
40 |
"""
|
41 |
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
42 |
and displays the results.
|
|
|
55 |
questions_url = f"{api_url}/questions"
|
56 |
submit_url = f"{api_url}/submit"
|
57 |
|
58 |
+
# 1. Instantiate Agent
|
59 |
try:
|
60 |
agent = BasicAgent()
|
61 |
except Exception as e:
|
62 |
print(f"Error instantiating agent: {e}")
|
63 |
return f"Error initializing agent: {e}", None
|
64 |
+
|
65 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
66 |
print(agent_code)
|
67 |
|
|
|
78 |
except requests.exceptions.RequestException as e:
|
79 |
print(f"Error fetching questions: {e}")
|
80 |
return f"Error fetching questions: {e}", None
|
|
|
|
|
|
|
|
|
81 |
except Exception as e:
|
82 |
print(f"An unexpected error occurred fetching questions: {e}")
|
83 |
return f"An unexpected error occurred fetching questions: {e}", None
|
|
|
125 |
print("Submission successful.")
|
126 |
results_df = pd.DataFrame(results_log)
|
127 |
return final_status, results_df
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
except Exception as e:
|
129 |
+
status_message = f"Submission Failed: {e}"
|
130 |
print(status_message)
|
131 |
results_df = pd.DataFrame(results_log)
|
132 |
return status_message, results_df
|
133 |
|
|
|
134 |
# --- Build Gradio Interface using Blocks ---
|
135 |
with gr.Blocks() as demo:
|
136 |
+
gr.Markdown("# LangGraph Agent Evaluation Runner")
|
137 |
gr.Markdown(
|
138 |
"""
|
139 |
**Instructions:**
|
140 |
+
1. Log in to your Hugging Face account using the button below.
|
141 |
+
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
142 |
+
|
143 |
+
**Agent Features:**
|
144 |
+
- Uses FAISS vector database for similar question retrieval
|
145 |
+
- Includes mathematical calculation tools
|
146 |
+
- Web search capabilities (Tavily, Wikipedia, ArXiv)
|
147 |
+
- Rate limiting for free tier models
|
148 |
+
- Best free models: Groq Llama 3.3 70B, Gemini 2.0 Flash, NVIDIA Llama 3.1 70B
|
149 |
"""
|
150 |
)
|
151 |
|
|
|
154 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
155 |
|
156 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
157 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
158 |
|
159 |
run_button.click(
|
|
|
163 |
|
164 |
if __name__ == "__main__":
|
165 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
166 |
+
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|