josondev commited on
Commit
cd32eb4
·
verified ·
1 Parent(s): 25c1140

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -78
app.py CHANGED
@@ -1,41 +1,42 @@
1
  """ Basic Agent Evaluation Runner"""
2
  import os
 
3
  import gradio as gr
4
  import requests
5
  import pandas as pd
6
  from langchain_core.messages import HumanMessage
7
- from veryfinal import get_final_answer
8
 
9
-
10
-
11
- # (Keep Constants as is)
12
  # --- Constants ---
13
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
14
 
15
  # --- Basic Agent Definition ---
16
- # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
17
-
18
-
19
  class BasicAgent:
20
  """A langgraph agent."""
21
  def __init__(self):
22
  print("BasicAgent initialized.")
23
-
 
24
  def __call__(self, question: str) -> str:
25
  print(f"Agent received question: {question}")
 
 
 
26
 
27
- # Get the full response from your agent
28
- full_response = get_final_answer(question)
29
-
30
- # Extract just the answer part after "FINAL ANSWER: "
31
- if "FINAL ANSWER: " in full_response:
32
- return full_response.split("FINAL ANSWER: ", 1)[1].strip()
33
- else:
34
- return full_response.strip()
35
-
36
-
 
 
37
 
38
- def run_and_submit_all( profile: gr.OAuthProfile | None):
39
  """
40
  Fetches all questions, runs the BasicAgent on them, submits all answers,
41
  and displays the results.
@@ -54,13 +55,13 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
54
  questions_url = f"{api_url}/questions"
55
  submit_url = f"{api_url}/submit"
56
 
57
- # 1. Instantiate Agent ( modify this part to create your agent)
58
  try:
59
  agent = BasicAgent()
60
  except Exception as e:
61
  print(f"Error instantiating agent: {e}")
62
  return f"Error initializing agent: {e}", None
63
- # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
64
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
65
  print(agent_code)
66
 
@@ -77,10 +78,6 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
77
  except requests.exceptions.RequestException as e:
78
  print(f"Error fetching questions: {e}")
79
  return f"Error fetching questions: {e}", None
80
- except requests.exceptions.JSONDecodeError as e:
81
- print(f"Error decoding JSON response from questions endpoint: {e}")
82
- print(f"Response text: {response.text[:500]}")
83
- return f"Error decoding server response for questions: {e}", None
84
  except Exception as e:
85
  print(f"An unexpected error occurred fetching questions: {e}")
86
  return f"An unexpected error occurred fetching questions: {e}", None
@@ -128,47 +125,27 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
128
  print("Submission successful.")
129
  results_df = pd.DataFrame(results_log)
130
  return final_status, results_df
131
- except requests.exceptions.HTTPError as e:
132
- error_detail = f"Server responded with status {e.response.status_code}."
133
- try:
134
- error_json = e.response.json()
135
- error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
136
- except requests.exceptions.JSONDecodeError:
137
- error_detail += f" Response: {e.response.text[:500]}"
138
- status_message = f"Submission Failed: {error_detail}"
139
- print(status_message)
140
- results_df = pd.DataFrame(results_log)
141
- return status_message, results_df
142
- except requests.exceptions.Timeout:
143
- status_message = "Submission Failed: The request timed out."
144
- print(status_message)
145
- results_df = pd.DataFrame(results_log)
146
- return status_message, results_df
147
- except requests.exceptions.RequestException as e:
148
- status_message = f"Submission Failed: Network error - {e}"
149
- print(status_message)
150
- results_df = pd.DataFrame(results_log)
151
- return status_message, results_df
152
  except Exception as e:
153
- status_message = f"An unexpected error occurred during submission: {e}"
154
  print(status_message)
155
  results_df = pd.DataFrame(results_log)
156
  return status_message, results_df
157
 
158
-
159
  # --- Build Gradio Interface using Blocks ---
160
  with gr.Blocks() as demo:
161
- gr.Markdown("# Basic Agent Evaluation Runner")
162
  gr.Markdown(
163
  """
164
  **Instructions:**
165
- 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
166
- 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
167
- 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
168
- ---
169
- **Disclaimers:**
170
- Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
171
- This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
 
 
172
  """
173
  )
174
 
@@ -177,7 +154,6 @@ with gr.Blocks() as demo:
177
  run_button = gr.Button("Run Evaluation & Submit All Answers")
178
 
179
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
180
- # Removed max_rows=10 from DataFrame constructor
181
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
182
 
183
  run_button.click(
@@ -187,24 +163,4 @@ with gr.Blocks() as demo:
187
 
188
  if __name__ == "__main__":
189
  print("\n" + "-"*30 + " App Starting " + "-"*30)
190
- # Check for SPACE_HOST and SPACE_ID at startup for information
191
- space_host_startup = os.getenv("SPACE_HOST")
192
- space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
193
-
194
- if space_host_startup:
195
- print(f"✅ SPACE_HOST found: {space_host_startup}")
196
- print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
197
- else:
198
- print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
199
-
200
- if space_id_startup: # Print repo URLs if SPACE_ID is found
201
- print(f"✅ SPACE_ID found: {space_id_startup}")
202
- print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
203
- print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
204
- else:
205
- print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
206
-
207
- print("-"*(60 + len(" App Starting ")) + "\n")
208
-
209
- print("Launching Gradio Interface for Basic Agent Evaluation...")
210
- demo.launch(debug=True, share=False)
 
1
  """ Basic Agent Evaluation Runner"""
2
  import os
3
+ import inspect
4
  import gradio as gr
5
  import requests
6
  import pandas as pd
7
  from langchain_core.messages import HumanMessage
8
+ from agent import build_graph
9
 
 
 
 
10
  # --- Constants ---
11
  DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
12
 
13
  # --- Basic Agent Definition ---
 
 
 
14
  class BasicAgent:
15
  """A langgraph agent."""
16
  def __init__(self):
17
  print("BasicAgent initialized.")
18
+ self.graph = build_graph(provider="groq") # Using Groq as default
19
+
20
  def __call__(self, question: str) -> str:
21
  print(f"Agent received question: {question}")
22
+ # Wrap the question in a HumanMessage from langchain_core
23
+ messages = [HumanMessage(content=question)]
24
+ config = {"configurable": {"thread_id": f"eval_{hash(question)}"}}
25
 
26
+ try:
27
+ result = self.graph.invoke({"messages": messages}, config)
28
+ answer = result['messages'][-1].content
29
+
30
+ # Extract final answer if present
31
+ if "FINAL ANSWER:" in answer:
32
+ return answer.split("FINAL ANSWER:")[-1].strip()
33
+ else:
34
+ return answer.strip()
35
+
36
+ except Exception as e:
37
+ return f"Error: {str(e)}"
38
 
39
+ def run_and_submit_all(profile: gr.OAuthProfile | None):
40
  """
41
  Fetches all questions, runs the BasicAgent on them, submits all answers,
42
  and displays the results.
 
55
  questions_url = f"{api_url}/questions"
56
  submit_url = f"{api_url}/submit"
57
 
58
+ # 1. Instantiate Agent
59
  try:
60
  agent = BasicAgent()
61
  except Exception as e:
62
  print(f"Error instantiating agent: {e}")
63
  return f"Error initializing agent: {e}", None
64
+
65
  agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
66
  print(agent_code)
67
 
 
78
  except requests.exceptions.RequestException as e:
79
  print(f"Error fetching questions: {e}")
80
  return f"Error fetching questions: {e}", None
 
 
 
 
81
  except Exception as e:
82
  print(f"An unexpected error occurred fetching questions: {e}")
83
  return f"An unexpected error occurred fetching questions: {e}", None
 
125
  print("Submission successful.")
126
  results_df = pd.DataFrame(results_log)
127
  return final_status, results_df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  except Exception as e:
129
+ status_message = f"Submission Failed: {e}"
130
  print(status_message)
131
  results_df = pd.DataFrame(results_log)
132
  return status_message, results_df
133
 
 
134
  # --- Build Gradio Interface using Blocks ---
135
  with gr.Blocks() as demo:
136
+ gr.Markdown("# LangGraph Agent Evaluation Runner")
137
  gr.Markdown(
138
  """
139
  **Instructions:**
140
+ 1. Log in to your Hugging Face account using the button below.
141
+ 2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
142
+
143
+ **Agent Features:**
144
+ - Uses FAISS vector database for similar question retrieval
145
+ - Includes mathematical calculation tools
146
+ - Web search capabilities (Tavily, Wikipedia, ArXiv)
147
+ - Rate limiting for free tier models
148
+ - Best free models: Groq Llama 3.3 70B, Gemini 2.0 Flash, NVIDIA Llama 3.1 70B
149
  """
150
  )
151
 
 
154
  run_button = gr.Button("Run Evaluation & Submit All Answers")
155
 
156
  status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
 
157
  results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
158
 
159
  run_button.click(
 
163
 
164
  if __name__ == "__main__":
165
  print("\n" + "-"*30 + " App Starting " + "-"*30)
166
+ demo.launch(debug=True, share=False)