Update veryfinal.py
Browse files- veryfinal.py +144 -339
veryfinal.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
"""Enhanced LangGraph + Agno Hybrid Agent System"""
|
2 |
-
import os
|
|
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
from typing import List, Dict, Any, TypedDict, Annotated
|
5 |
import operator
|
6 |
|
7 |
# LangGraph imports
|
8 |
from langgraph.graph import START, StateGraph, MessagesState
|
9 |
-
from langgraph.prebuilt import tools_condition
|
10 |
-
from langgraph.prebuilt import ToolNode
|
11 |
from langgraph.checkpoint.memory import MemorySaver
|
12 |
|
13 |
# LangChain imports
|
@@ -15,82 +16,73 @@ from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain_groq import ChatGroq
|
17 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
18 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
19 |
-
from langchain_community.document_loaders import WikipediaLoader
|
20 |
from langchain_community.vectorstores import FAISS
|
21 |
-
from langchain_nvidia_ai_endpoints import NVIDIAEmbeddings
|
22 |
from langchain.tools.retriever import create_retriever_tool
|
23 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
24 |
-
from langchain_community.document_loaders import JSONLoader
|
25 |
|
26 |
# Agno imports
|
27 |
from agno.agent import Agent
|
28 |
-
from agno.models.groq import
|
29 |
-
from agno.models.google import
|
30 |
from agno.tools.duckduckgo import DuckDuckGoTools
|
31 |
from agno.memory.agent import AgentMemory
|
32 |
-
from agno.storage.sqlite import SqliteStorage
|
33 |
|
34 |
load_dotenv()
|
35 |
|
36 |
-
#
|
37 |
class PerformanceRateLimiter:
|
38 |
-
def __init__(self,
|
39 |
-
self.
|
40 |
-
self.
|
41 |
-
self.
|
42 |
-
self.
|
43 |
-
|
44 |
-
|
45 |
def wait_if_needed(self):
|
46 |
-
|
47 |
-
self.
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
self.request_times.append(current_time)
|
58 |
-
|
59 |
def record_success(self):
|
60 |
-
self.
|
61 |
-
|
62 |
def record_failure(self):
|
63 |
-
self.
|
64 |
|
65 |
-
#
|
66 |
-
gemini_limiter = PerformanceRateLimiter(
|
67 |
-
groq_limiter
|
68 |
-
nvidia_limiter = PerformanceRateLimiter(
|
69 |
|
70 |
-
# Agno
|
71 |
def create_agno_agents():
|
72 |
-
"""Create high-performance Agno agents"""
|
73 |
-
|
74 |
-
# Storage for persistent memory
|
75 |
storage = SqliteStorage(
|
76 |
table_name="agent_sessions",
|
77 |
-
db_file="tmp/
|
|
|
78 |
)
|
79 |
-
|
80 |
-
# Math specialist using Groq (fastest)
|
81 |
math_agent = Agent(
|
82 |
name="MathSpecialist",
|
83 |
-
model=
|
84 |
model="llama-3.3-70b-versatile",
|
85 |
api_key=os.getenv("GROQ_API_KEY"),
|
86 |
temperature=0
|
87 |
),
|
88 |
description="Expert mathematical problem solver",
|
89 |
instructions=[
|
90 |
-
"Solve
|
91 |
"Show step-by-step calculations",
|
92 |
-
"Use tools
|
93 |
-
"
|
94 |
],
|
95 |
memory=AgentMemory(
|
96 |
db=storage,
|
@@ -100,21 +92,18 @@ def create_agno_agents():
|
|
100 |
show_tool_calls=False,
|
101 |
markdown=False
|
102 |
)
|
103 |
-
|
104 |
-
# Research specialist using Gemini (most capable)
|
105 |
research_agent = Agent(
|
106 |
name="ResearchSpecialist",
|
107 |
-
model=
|
108 |
model="gemini-2.0-flash-lite",
|
109 |
api_key=os.getenv("GOOGLE_API_KEY"),
|
110 |
temperature=0
|
111 |
),
|
112 |
-
description="Expert research and information
|
113 |
instructions=[
|
114 |
-
"
|
115 |
-
"Synthesize information
|
116 |
-
"
|
117 |
-
"Focus on accuracy and relevance"
|
118 |
],
|
119 |
tools=[DuckDuckGoTools()],
|
120 |
memory=AgentMemory(
|
@@ -125,337 +114,153 @@ def create_agno_agents():
|
|
125 |
show_tool_calls=False,
|
126 |
markdown=False
|
127 |
)
|
128 |
-
|
129 |
-
return {
|
130 |
-
"math": math_agent,
|
131 |
-
"research": research_agent
|
132 |
-
}
|
133 |
|
134 |
-
# LangGraph
|
135 |
@tool
|
136 |
def multiply(a: int, b: int) -> int:
|
137 |
-
"""Multiply two numbers."""
|
138 |
return a * b
|
139 |
|
140 |
@tool
|
141 |
def add(a: int, b: int) -> int:
|
142 |
-
"""Add two numbers."""
|
143 |
return a + b
|
144 |
|
145 |
@tool
|
146 |
def subtract(a: int, b: int) -> int:
|
147 |
-
"""Subtract two numbers."""
|
148 |
return a - b
|
149 |
|
150 |
@tool
|
151 |
def divide(a: int, b: int) -> float:
|
152 |
-
"""Divide two numbers."""
|
153 |
if b == 0:
|
154 |
raise ValueError("Cannot divide by zero.")
|
155 |
return a / b
|
156 |
|
157 |
@tool
|
158 |
def modulus(a: int, b: int) -> int:
|
159 |
-
"""Get the modulus of two numbers."""
|
160 |
return a % b
|
161 |
|
162 |
@tool
|
163 |
def optimized_web_search(query: str) -> str:
|
164 |
-
"""Optimized web search with caching."""
|
165 |
try:
|
166 |
-
time.sleep(random.uniform(1, 2))
|
167 |
-
|
168 |
-
|
169 |
-
f'<Document source="{doc.get("url", "")}" />\n{doc.get("content", "")[:500]}\n</Document>' # Truncated for speed
|
170 |
-
for doc in search_docs
|
171 |
-
])
|
172 |
-
return formatted_search_docs
|
173 |
except Exception as e:
|
174 |
-
return f"Web search failed: {
|
175 |
|
176 |
@tool
|
177 |
def optimized_wiki_search(query: str) -> str:
|
178 |
-
"""Optimized Wikipedia search."""
|
179 |
try:
|
180 |
-
time.sleep(random.uniform(0.5,
|
181 |
-
|
182 |
-
|
183 |
-
f'<Document source="{doc.metadata["source"]}" />\n{doc.page_content[:800]}\n</Document>' # Truncated for speed
|
184 |
-
for doc in search_docs
|
185 |
-
])
|
186 |
-
return formatted_search_docs
|
187 |
except Exception as e:
|
188 |
-
return f"Wikipedia search failed: {
|
189 |
|
190 |
-
#
|
191 |
-
def
|
192 |
-
"""Setup optimized FAISS vector store"""
|
193 |
try:
|
194 |
-
|
195 |
-
{
|
196 |
-
page_content: .Question,
|
197 |
-
metadata: {
|
198 |
-
task_id: .task_id,
|
199 |
-
Final_answer: ."Final answer"
|
200 |
-
}
|
201 |
-
}
|
202 |
"""
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
json_chunks = text_splitter.split_documents(json_docs)
|
210 |
-
|
211 |
-
embeddings = NVIDIAEmbeddings(
|
212 |
-
model="nvidia/nv-embedqa-e5-v5",
|
213 |
-
api_key=os.getenv("NVIDIA_API_KEY")
|
214 |
-
)
|
215 |
-
vector_store = FAISS.from_documents(json_chunks, embeddings)
|
216 |
-
|
217 |
-
return vector_store
|
218 |
except Exception as e:
|
219 |
print(f"FAISS setup failed: {e}")
|
220 |
return None
|
221 |
|
222 |
-
#
|
223 |
-
class
|
224 |
-
messages: Annotated[List[HumanMessage
|
225 |
query: str
|
226 |
agent_type: str
|
227 |
final_answer: str
|
228 |
-
|
229 |
-
|
230 |
|
231 |
-
|
232 |
-
class HybridLangGraphAgnoSystem:
|
233 |
def __init__(self):
|
234 |
-
self.
|
235 |
-
self.
|
236 |
-
self.
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
groq_llm = ChatGroq(model="llama-3.3-70b-versatile", temperature=0)
|
254 |
-
gemini_llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-lite", temperature=0)
|
255 |
-
|
256 |
-
def router_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
257 |
-
"""Smart routing between LangGraph and Agno"""
|
258 |
-
query = state["query"].lower()
|
259 |
-
|
260 |
-
# Route math to LangGraph (faster for calculations)
|
261 |
-
if any(word in query for word in ['calculate', 'math', 'multiply', 'add', 'subtract', 'divide']):
|
262 |
-
agent_type = "langgraph_math"
|
263 |
-
# Route complex research to Agno (better reasoning)
|
264 |
-
elif any(word in query for word in ['research', 'analyze', 'explain', 'compare']):
|
265 |
-
agent_type = "agno_research"
|
266 |
-
# Route factual queries to LangGraph (faster retrieval)
|
267 |
-
elif any(word in query for word in ['what is', 'who is', 'when', 'where']):
|
268 |
-
agent_type = "langgraph_retrieval"
|
269 |
-
else:
|
270 |
-
agent_type = "agno_general"
|
271 |
-
|
272 |
-
return {**state, "agent_type": agent_type}
|
273 |
-
|
274 |
-
def langgraph_math_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
275 |
-
"""LangGraph math processing (optimized for speed)"""
|
276 |
groq_limiter.wait_if_needed()
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
try:
|
285 |
-
response = llm_with_tools.invoke(messages)
|
286 |
-
processing_time = time.time() - start_time
|
287 |
-
|
288 |
-
return {
|
289 |
-
**state,
|
290 |
-
"messages": state["messages"] + [response],
|
291 |
-
"final_answer": response.content,
|
292 |
-
"performance_metrics": {"processing_time": processing_time, "provider": "LangGraph-Groq"}
|
293 |
-
}
|
294 |
-
except Exception as e:
|
295 |
-
return {**state, "final_answer": f"Math processing error: {str(e)}"}
|
296 |
-
|
297 |
-
def agno_research_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
298 |
-
"""Agno research processing (optimized for quality)"""
|
299 |
gemini_limiter.wait_if_needed()
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
response = self.agno_agents["research"].run(state["query"], stream=False)
|
305 |
-
processing_time = time.time() - start_time
|
306 |
-
|
307 |
-
return {
|
308 |
-
**state,
|
309 |
-
"agno_response": response,
|
310 |
-
"final_answer": response,
|
311 |
-
"performance_metrics": {"processing_time": processing_time, "provider": "Agno-Gemini"}
|
312 |
-
}
|
313 |
-
except Exception as e:
|
314 |
-
return {**state, "final_answer": f"Research processing error: {str(e)}"}
|
315 |
-
|
316 |
-
def langgraph_retrieval_node(state: EnhancedAgentState) -> EnhancedAgentState:
|
317 |
-
"""LangGraph retrieval processing (optimized for speed)"""
|
318 |
groq_limiter.wait_if_needed()
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
response = self.agno_agents["research"].run(state["query"], stream=False)
|
350 |
-
|
351 |
-
processing_time = time.time() - start_time
|
352 |
-
|
353 |
-
return {
|
354 |
-
**state,
|
355 |
-
"agno_response": response,
|
356 |
-
"final_answer": response,
|
357 |
-
"performance_metrics": {"processing_time": processing_time, "provider": "Agno-General"}
|
358 |
-
}
|
359 |
-
except Exception as e:
|
360 |
-
return {**state, "final_answer": f"General processing error: {str(e)}"}
|
361 |
-
|
362 |
-
def route_agent(state: EnhancedAgentState) -> str:
|
363 |
-
"""Route to appropriate processing node"""
|
364 |
-
agent_type = state.get("agent_type", "agno_general")
|
365 |
-
return agent_type
|
366 |
-
|
367 |
-
# Build the graph
|
368 |
-
builder = StateGraph(EnhancedAgentState)
|
369 |
-
builder.add_node("router", router_node)
|
370 |
-
builder.add_node("langgraph_math", langgraph_math_node)
|
371 |
-
builder.add_node("agno_research", agno_research_node)
|
372 |
-
builder.add_node("langgraph_retrieval", langgraph_retrieval_node)
|
373 |
-
builder.add_node("agno_general", agno_general_node)
|
374 |
-
|
375 |
-
builder.set_entry_point("router")
|
376 |
-
builder.add_conditional_edges(
|
377 |
-
"router",
|
378 |
-
route_agent,
|
379 |
-
{
|
380 |
-
"langgraph_math": "langgraph_math",
|
381 |
-
"agno_research": "agno_research",
|
382 |
-
"langgraph_retrieval": "langgraph_retrieval",
|
383 |
-
"agno_general": "agno_general"
|
384 |
-
}
|
385 |
-
)
|
386 |
-
|
387 |
-
# All nodes end the workflow
|
388 |
-
for node in ["langgraph_math", "agno_research", "langgraph_retrieval", "agno_general"]:
|
389 |
-
builder.add_edge(node, "END")
|
390 |
-
|
391 |
-
memory = MemorySaver()
|
392 |
-
return builder.compile(checkpointer=memory)
|
393 |
-
|
394 |
-
def process_query(self, query: str) -> Dict[str, Any]:
|
395 |
-
"""Process query with performance optimization"""
|
396 |
-
start_time = time.time()
|
397 |
-
|
398 |
-
initial_state = {
|
399 |
-
"messages": [HumanMessage(content=query)],
|
400 |
-
"query": query,
|
401 |
-
"agent_type": "",
|
402 |
-
"final_answer": "",
|
403 |
-
"performance_metrics": {},
|
404 |
-
"agno_response": ""
|
405 |
-
}
|
406 |
-
|
407 |
-
config = {"configurable": {"thread_id": f"hybrid_{hash(query)}"}}
|
408 |
-
|
409 |
try:
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
return {
|
414 |
-
"answer": result.get("final_answer", "No response generated"),
|
415 |
-
"performance_metrics": {
|
416 |
-
**result.get("performance_metrics", {}),
|
417 |
-
"total_time": total_time
|
418 |
-
},
|
419 |
-
"provider_used": result.get("performance_metrics", {}).get("provider", "Unknown")
|
420 |
-
}
|
421 |
except Exception as e:
|
422 |
-
return {
|
423 |
-
"answer": f"Error: {str(e)}",
|
424 |
-
"performance_metrics": {"total_time": time.time() - start_time, "error": True},
|
425 |
-
"provider_used": "Error"
|
426 |
-
}
|
427 |
-
|
428 |
-
# Build graph function for compatibility
|
429 |
-
def build_graph(provider: str = "hybrid"):
|
430 |
-
"""Build the hybrid graph system"""
|
431 |
-
if provider == "hybrid":
|
432 |
-
system = HybridLangGraphAgnoSystem()
|
433 |
-
return system.graph
|
434 |
-
else:
|
435 |
-
# Fallback to original implementation
|
436 |
-
return build_original_graph(provider)
|
437 |
|
438 |
-
def
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
|
443 |
-
#
|
444 |
-
if __name__
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
"Explain the economic impacts of AI automation", # Should route to Agno research
|
451 |
-
"What are the names of US presidents who were assassinated?", # Should route to LangGraph retrieval
|
452 |
-
"Compare quantum computing with classical computing" # Should route to Agno general
|
453 |
-
]
|
454 |
-
|
455 |
-
for query in test_queries:
|
456 |
-
print(f"\nQuery: {query}")
|
457 |
-
result = hybrid_system.process_query(query)
|
458 |
-
print(f"Answer: {result['answer']}")
|
459 |
-
print(f"Provider: {result['provider_used']}")
|
460 |
-
print(f"Processing Time: {result['performance_metrics'].get('total_time', 0):.2f}s")
|
461 |
-
print("-" * 80)
|
|
|
1 |
"""Enhanced LangGraph + Agno Hybrid Agent System"""
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import random
|
5 |
from dotenv import load_dotenv
|
6 |
from typing import List, Dict, Any, TypedDict, Annotated
|
7 |
import operator
|
8 |
|
9 |
# LangGraph imports
|
10 |
from langgraph.graph import START, StateGraph, MessagesState
|
11 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
|
|
12 |
from langgraph.checkpoint.memory import MemorySaver
|
13 |
|
14 |
# LangChain imports
|
|
|
16 |
from langchain_core.tools import tool
|
17 |
from langchain_groq import ChatGroq
|
18 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
19 |
+
from langchain_nvidia_ai_endpoints import ChatNVIDIA, NVIDIAEmbeddings
|
20 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
21 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader, JSONLoader
|
22 |
from langchain_community.vectorstores import FAISS
|
|
|
23 |
from langchain.tools.retriever import create_retriever_tool
|
24 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
|
|
25 |
|
26 |
# Agno imports
|
27 |
from agno.agent import Agent
|
28 |
+
from agno.models.groq import GroqChat
|
29 |
+
from agno.models.google import GeminiChat
|
30 |
from agno.tools.duckduckgo import DuckDuckGoTools
|
31 |
from agno.memory.agent import AgentMemory
|
32 |
+
from agno.storage.sqlite import SqliteStorage # updated per docs
|
33 |
|
34 |
load_dotenv()
|
35 |
|
36 |
+
# Rate limiter with exponential backoff
|
37 |
class PerformanceRateLimiter:
|
38 |
+
def __init__(self, rpm: int, name: str):
|
39 |
+
self.rpm = rpm
|
40 |
+
self.name = name
|
41 |
+
self.times = []
|
42 |
+
self.failures = 0
|
43 |
+
|
|
|
44 |
def wait_if_needed(self):
|
45 |
+
now = time.time()
|
46 |
+
self.times = [t for t in self.times if now - t < 60]
|
47 |
+
if len(self.times) >= self.rpm:
|
48 |
+
wait = 60 - (now - self.times[0]) + random.uniform(1, 3)
|
49 |
+
time.sleep(wait)
|
50 |
+
if self.failures:
|
51 |
+
backoff = min(2 ** self.failures, 30) + random.uniform(0.5, 1.5)
|
52 |
+
time.sleep(backoff)
|
53 |
+
self.times.append(now)
|
54 |
+
|
|
|
|
|
|
|
55 |
def record_success(self):
|
56 |
+
self.failures = 0
|
57 |
+
|
58 |
def record_failure(self):
|
59 |
+
self.failures += 1
|
60 |
|
61 |
+
# initialize limiters
|
62 |
+
gemini_limiter = PerformanceRateLimiter(28, "Gemini")
|
63 |
+
groq_limiter = PerformanceRateLimiter(28, "Groq")
|
64 |
+
nvidia_limiter = PerformanceRateLimiter(4, "NVIDIA")
|
65 |
|
66 |
+
# create Agno agents with SQLite storage
|
67 |
def create_agno_agents():
|
|
|
|
|
|
|
68 |
storage = SqliteStorage(
|
69 |
table_name="agent_sessions",
|
70 |
+
db_file="tmp/agent_sessions.db",
|
71 |
+
auto_upgrade_schema=True
|
72 |
)
|
|
|
|
|
73 |
math_agent = Agent(
|
74 |
name="MathSpecialist",
|
75 |
+
model=GroqChat(
|
76 |
model="llama-3.3-70b-versatile",
|
77 |
api_key=os.getenv("GROQ_API_KEY"),
|
78 |
temperature=0
|
79 |
),
|
80 |
description="Expert mathematical problem solver",
|
81 |
instructions=[
|
82 |
+
"Solve math problems with precision",
|
83 |
"Show step-by-step calculations",
|
84 |
+
"Use calculation tools as needed",
|
85 |
+
"Finish with: FINAL ANSWER: [result]"
|
86 |
],
|
87 |
memory=AgentMemory(
|
88 |
db=storage,
|
|
|
92 |
show_tool_calls=False,
|
93 |
markdown=False
|
94 |
)
|
|
|
|
|
95 |
research_agent = Agent(
|
96 |
name="ResearchSpecialist",
|
97 |
+
model=GeminiChat(
|
98 |
model="gemini-2.0-flash-lite",
|
99 |
api_key=os.getenv("GOOGLE_API_KEY"),
|
100 |
temperature=0
|
101 |
),
|
102 |
+
description="Expert research and information specialist",
|
103 |
instructions=[
|
104 |
+
"Use web and wiki tools to gather data",
|
105 |
+
"Synthesize information with clarity",
|
106 |
+
"Cite sources and finish with: FINAL ANSWER: [answer]"
|
|
|
107 |
],
|
108 |
tools=[DuckDuckGoTools()],
|
109 |
memory=AgentMemory(
|
|
|
114 |
show_tool_calls=False,
|
115 |
markdown=False
|
116 |
)
|
117 |
+
return {"math": math_agent, "research": research_agent}
|
|
|
|
|
|
|
|
|
118 |
|
119 |
+
# LangGraph tools
|
120 |
@tool
|
121 |
def multiply(a: int, b: int) -> int:
|
|
|
122 |
return a * b
|
123 |
|
124 |
@tool
|
125 |
def add(a: int, b: int) -> int:
|
|
|
126 |
return a + b
|
127 |
|
128 |
@tool
|
129 |
def subtract(a: int, b: int) -> int:
|
|
|
130 |
return a - b
|
131 |
|
132 |
@tool
|
133 |
def divide(a: int, b: int) -> float:
|
|
|
134 |
if b == 0:
|
135 |
raise ValueError("Cannot divide by zero.")
|
136 |
return a / b
|
137 |
|
138 |
@tool
|
139 |
def modulus(a: int, b: int) -> int:
|
|
|
140 |
return a % b
|
141 |
|
142 |
@tool
|
143 |
def optimized_web_search(query: str) -> str:
|
|
|
144 |
try:
|
145 |
+
time.sleep(random.uniform(1, 2))
|
146 |
+
docs = TavilySearchResults(max_results=2).invoke(query=query)
|
147 |
+
return "\n\n---\n\n".join(f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>" for d in docs)
|
|
|
|
|
|
|
|
|
148 |
except Exception as e:
|
149 |
+
return f"Web search failed: {e}"
|
150 |
|
151 |
@tool
|
152 |
def optimized_wiki_search(query: str) -> str:
|
|
|
153 |
try:
|
154 |
+
time.sleep(random.uniform(0.5,1))
|
155 |
+
docs = WikipediaLoader(query=query, load_max_docs=1).load()
|
156 |
+
return "\n\n---\n\n".join(f"<Doc src='{d.metadata['source']}'>{d.page_content[:800]}</Doc>" for d in docs)
|
|
|
|
|
|
|
|
|
157 |
except Exception as e:
|
158 |
+
return f"Wikipedia search failed: {e}"
|
159 |
|
160 |
+
# FAISS setup
|
161 |
+
def setup_faiss():
|
|
|
162 |
try:
|
163 |
+
schema = """
|
164 |
+
{ page_content: .Question, metadata: { task_id: .task_id, Final_answer: ."Final answer" } }
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
"""
|
166 |
+
loader = JSONLoader("metadata.jsonl", jq_schema=schema, json_lines=True, text_content=False)
|
167 |
+
docs = loader.load()
|
168 |
+
split = RecursiveCharacterTextSplitter(chunk_size=256, chunk_overlap=50)
|
169 |
+
chunks = split.split_documents(docs)
|
170 |
+
embeds = NVIDIAEmbeddings(model="nvidia/nv-embedqa-e5-v5", api_key=os.getenv("NVIDIA_API_KEY"))
|
171 |
+
return FAISS.from_documents(chunks, embeds)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
except Exception as e:
|
173 |
print(f"FAISS setup failed: {e}")
|
174 |
return None
|
175 |
|
176 |
+
# state type
|
177 |
+
class State(TypedDict):
|
178 |
+
messages: Annotated[List[HumanMessage|AIMessage], operator.add]
|
179 |
query: str
|
180 |
agent_type: str
|
181 |
final_answer: str
|
182 |
+
perf: Dict[str,Any]
|
183 |
+
agno_resp: str
|
184 |
|
185 |
+
class HybridSystem:
|
|
|
186 |
def __init__(self):
|
187 |
+
self.agno = create_agno_agents()
|
188 |
+
self.store = setup_faiss()
|
189 |
+
self.tools = [multiply, add, subtract, divide, modulus, optimized_web_search, optimized_wiki_search]
|
190 |
+
if self.store:
|
191 |
+
retr = self.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
|
192 |
+
self.tools.append(create_retriever_tool(retr, "Question_Search","retrieve similar Qs"))
|
193 |
+
self.graph = self._build_graph()
|
194 |
+
def _build_graph(self):
|
195 |
+
groq = ChatGroq(model="llama-3.3-70b-versatile",temperature=0)
|
196 |
+
gem = ChatGoogleGenerativeAI(model="gemini-2.0-flash-lite",temperature=0)
|
197 |
+
nvd = ChatNVIDIA(model="meta/llama-3.1-70b-instruct",temperature=0)
|
198 |
+
def route(st:State)->State:
|
199 |
+
q=st["query"].lower()
|
200 |
+
if any(w in q for w in ["calculate","math"]): t="lg_math"
|
201 |
+
elif any(w in q for w in ["research","analyze"]): t="agno_research"
|
202 |
+
elif any(w in q for w in ["what is","who is"]): t="lg_retrieval"
|
203 |
+
else: t="agno_general"
|
204 |
+
return {**st,"agent_type":t}
|
205 |
+
def lg_math(st:State)->State:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
groq_limiter.wait_if_needed()
|
207 |
+
t0=time.time()
|
208 |
+
llmt=groq.bind_tools([multiply,add,subtract,divide,modulus])
|
209 |
+
sys=SystemMessage(content="Calc fast. FINAL ANSWER: [result]")
|
210 |
+
res=llmt.invoke([sys,HumanMessage(content=st["query"])])
|
211 |
+
return {**st,"final_answer":res.content,"perf":{"time":time.time()-t0,"prov":"LG-Groq"}}
|
212 |
+
def agno_research(st:State)->State:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
gemini_limiter.wait_if_needed()
|
214 |
+
t0=time.time()
|
215 |
+
resp=self.agno["research"].run(st["query"],stream=False)
|
216 |
+
return {**st,"final_answer":resp,"perf":{"time":time.time()-t0,"prov":"Agno-Gemini"}}
|
217 |
+
def lg_retrieval(st:State)->State:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
groq_limiter.wait_if_needed()
|
219 |
+
t0=time.time()
|
220 |
+
llmt=groq.bind_tools(self.tools)
|
221 |
+
sys=SystemMessage(content="Retrieve fast. FINAL ANSWER: [ans]")
|
222 |
+
res=llmt.invoke([sys,HumanMessage(content=st["query"])])
|
223 |
+
return {**st,"final_answer":res.content,"perf":{"time":time.time()-t0,"prov":"LG-Retrieval"}}
|
224 |
+
def agno_general(st:State)->State:
|
225 |
+
nvidia_limiter.wait_if_needed()
|
226 |
+
t0=time.time()
|
227 |
+
if any(w in st["query"].lower() for w in ["calculate","compute"]):
|
228 |
+
resp=self.agno["math"].run(st["query"],stream=False)
|
229 |
+
else:
|
230 |
+
resp=self.agno["research"].run(st["query"],stream=False)
|
231 |
+
return {**st,"final_answer":resp,"perf":{"time":time.time()-t0,"prov":"Agno-Gen"}}
|
232 |
+
def pick(st:State)->str: return st["agent_type"]
|
233 |
+
g=StateGraph(State)
|
234 |
+
g.add_node("router",route)
|
235 |
+
g.add_node("lg_math",lg_math)
|
236 |
+
g.add_node("agno_research",agno_research)
|
237 |
+
g.add_node("lg_retrieval",lg_retrieval)
|
238 |
+
g.add_node("agno_general",agno_general)
|
239 |
+
g.set_entry_point("router")
|
240 |
+
g.add_conditional_edges("router",pick,{
|
241 |
+
"lg_math":"lg_math","agno_research":"agno_research","lg_retrieval":"lg_retrieval","agno_general":"agno_general"
|
242 |
+
})
|
243 |
+
for n in ["lg_math","agno_research","lg_retrieval","agno_general"]:
|
244 |
+
g.add_edge(n,"END")
|
245 |
+
return g.compile(checkpointer=MemorySaver())
|
246 |
+
def process(self,q:str)->Dict[str,Any]:
|
247 |
+
st={"messages":[HumanMessage(content=q)],"query":q,"agent_type":"","final_answer":"","perf":{}, "agno_resp":""}
|
248 |
+
cfg={"configurable":{"thread_id":f"hybrid_{hash(q)}"}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
try:
|
250 |
+
out=self.graph.invoke(st,cfg)
|
251 |
+
return {"answer":out["final_answer"],"perf":out["perf"],"prov":out["perf"].get("prov")}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
except Exception as e:
|
253 |
+
return {"answer":f"Error: {e}","perf":{},"prov":"Error"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
|
255 |
+
def build_graph(provider:str="hybrid"):
|
256 |
+
if provider=="hybrid":
|
257 |
+
return HybridSystem().graph
|
258 |
+
raise ValueError("Only 'hybrid' supported")
|
259 |
|
260 |
+
# Test
|
261 |
+
if __name__=="__main__":
|
262 |
+
graph=build_graph()
|
263 |
+
msgs=[HumanMessage(content="What are the names of the US presidents who were assassinated?")]
|
264 |
+
res=graph.invoke({"messages":msgs},{"configurable":{"thread_id":"test"}})
|
265 |
+
for m in res["messages"]:
|
266 |
+
m.pretty_print()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|