File size: 4,363 Bytes
af23901
b71783b
af23901
b71783b
af23901
 
 
 
 
 
b71783b
 
6e3dcdf
b71783b
 
 
6e3dcdf
 
 
 
b71783b
 
 
 
 
 
 
71c2c20
b71783b
 
 
 
 
 
 
 
 
 
a989318
 
 
 
b71783b
 
 
 
 
 
 
 
 
 
a989318
b71783b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af23901
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import json
import pandas as pd
from stqdm import stqdm
from typing import Optional
from simulate import (
    calculate_scenario_probabilities,
    create_simulate_summary,
    run_simulations,
)
from yahoo_client import YahooFantasyClient


def calculate_luck(df: pd.DataFrame, as_of_week: Optional[int] = None, include_current: bool = False) -> pd.DataFrame:
    if as_of_week:
        df_complete = df[df.week <= as_of_week]
    else:
        status_list = ["postevent"]
        if include_current:
            status_list.append("midevent")
        df_complete = df[df.matchup_status.isin(status_list)]
    df_complete["actual_wins"] = df_complete["win_probability"].apply(lambda x: x > 0.5)
    df_list = []
    n_teams = df.team_name.nunique()
    for week, df_week in df_complete.groupby("week"):
        if len(df_week) != n_teams:
            next
        else:
            df_week["against_all_wins"] = ((df_week.team_points.rank().astype("float") - 1) / (n_teams - 1)).round(2)
            df_week["against_all_losses"] = 1 - df_week["against_all_wins"]
            df_week["half_wins"] = (df_week["against_all_wins"] >= 0.5) * 1.0
            df_week["half_losses"] = 1 - df_week["half_wins"]
            df_week["against_all_luck"] = df_week["actual_wins"] - df_week["against_all_wins"]
            df_week["half_luck"] = df_week["actual_wins"] - df_week["half_wins"]
            df_week["earned_wins"] = ((df_week["against_all_wins"] + df_week["half_wins"]) / 2).round(2)
            df_week["luck_wins"] = df_week["actual_wins"] - df_week["earned_wins"]
            df_list.append(df_week)

    df_luck = pd.concat(df_list)
    return df_luck


def get_grouped_luck(df_luck_all_weeks: pd.DataFrame) -> pd.DataFrame:
    summ_cols = [
        "team_name",
        "team_points",
        "against_all_wins",
        "half_wins",
        "actual_wins",
        "earned_wins",
        "luck_wins",
    ]
    sort_by = "luck_wins"
    return df_luck_all_weeks[summ_cols].groupby("team_name").sum().sort_values(sort_by, ascending=False)


def summarize_remaining_wins_from_matches_map(matches_map):
    """
    Return map for all teams to map of number remaining wins
    to array of playoff and bye prob, respectively.
    """
    remaining_map = {}
    for team_name, team_matches_map in matches_map.items():
        team_remaining_map = {}
        for match_binary_str, prob_list in team_matches_map.items():
            n_wins = sum([int(x) for x in match_binary_str])
            if n_wins in team_remaining_map:
                incr_obs, incr_playoff_prob, incr_bye_prob = prob_list
                if incr_obs == 0:
                    continue
                current_obs, current_playoff_prob, current_bye_prob = team_remaining_map[n_wins]
                new_obs = current_obs + incr_obs
                new_playoff_prob = round(
                    (current_obs * current_playoff_prob + incr_obs * incr_playoff_prob) / new_obs, 3
                )
                new_bye_prob = round((current_obs * current_bye_prob + incr_obs * incr_bye_prob) / new_obs, 3)
                team_remaining_map[n_wins] = [new_obs, new_playoff_prob, new_bye_prob]
            else:
                team_remaining_map[n_wins] = prob_list
        remaining_map[team_name] = team_remaining_map
    return remaining_map


def analyze_league(league_key: str, yahoo_client: YahooFantasyClient) -> None:
    df_scores = yahoo_client.full_schedule_dataframe(league_key)
    league_settings = yahoo_client.parse_league_settings(league_key)
    name_str = league_settings.name.strip().replace(" ", "_").lower()
    sim_completed_weeks = league_settings.current_week - 1
    print(f"{sim_completed_weeks=}")
    stqdm.pandas()
    df_sims = run_simulations(
        df_scores,
        complete_weeks=sim_completed_weeks,
        n_sims=10000,
        n_playoff=league_settings.num_playoff_teams,
    )
    df_sim_sum = create_simulate_summary(df_sims)
    df_sim_sum.to_csv(f"{name_str}_sim_sum.csv")

    scenario_probs = calculate_scenario_probabilities(df_sims)
    with open(f"{name_str}_scenario_probs.json", "w") as f:
        json.dump(scenario_probs, f)

    remaining_wins_to_probs_map = summarize_remaining_wins_from_matches_map(scenario_probs)
    with open(f"{name_str}_remaining_wins_probs.json", "w") as f:
        json.dump(remaining_wins_to_probs_map, f)