Spaces:
Running
Running
import gradio as gr | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
import torch | |
import librosa | |
# Load the model and processor | |
processor = Wav2Vec2Processor.from_pretrained("SpeechResearch/whisper-ft-normal") | |
model = Wav2Vec2ForCTC.from_pretrained("SpeechResearch/whisper-ft-normal") | |
def transcribe_speech(audio_path): | |
speech, _ = librosa.load(audio_path, sr=16000) | |
input_values = processor(speech, return_tensors="pt", padding="longest").input_values | |
with torch.no_grad(): | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids) | |
return transcription[0] | |
def pipe(text, voice, image_in): | |
# Assuming voice is a file path to the audio file | |
transcription = transcribe_speech(voice) | |
# Now use this transcription with your get_dreamtalk function | |
video = get_dreamtalk(image_in, transcription) | |
return video | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.HTML(""" | |
<h1 style="text-align: center;"> | |
Talking Image | |
</h1> | |
<h3 style="text-align: center;"> | |
Clone your voice and make your photos speak. | |
</h3> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
image_in = gr.Image(label="Portrait IN", type="filepath", value="./creatus.jpg") | |
with gr.Column(): | |
voice = gr.Audio(type="filepath", label="Upload or Record Speaker audio (Optional voice cloning)") | |
text = gr.Textbox(label="text") | |
submit_btn = gr.Button('Submit') | |
with gr.Column(): | |
video_o = gr.Video(label="Video result") | |
submit_btn.click( | |
fn=pipe, | |
inputs=[text, voice, image_in], | |
outputs=[video_o], | |
concurrency_limit=3 | |
) | |
demo.queue(max_size=10).launch(show_error=True, show_api=False) | |