Spaces:
Paused
Paused
File size: 5,748 Bytes
4ff376f 7f83f4e bbfcd34 4ff376f e2eb364 4ff376f 6a062bb 4ff376f 7f83f4e 7b74431 2c73e16 daadf81 7f83f4e 4c64b1f b1960ab 4c64b1f 4ff376f 2c73e16 01e574a 4ff376f 01e574a 4ff376f 01e574a 6a062bb 01e574a 6a062bb 01e574a 6a062bb 01e574a 6a062bb 01e574a 3e944d7 01e574a 3e944d7 01e574a 4ff376f 01e574a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import io
import os
import torch
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
from langchain_community.vectorstores import FAISS
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Global variables are no longer needed, we will use session state
# PDF ํ์ผ ๋ก๋ ๋ฐ ํ
์คํธ ์ถ์ถ
def load_pdf(pdf_file):
pdf_reader = PdfReader(pdf_file)
text = "".join(page.extract_text() for page in pdf_reader.pages)
return text
# ํ
์คํธ๋ฅผ ์ฒญํฌ๋ก ๋ถํ
def split_text(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
return text_splitter.split_text(text)
# FAISS ๋ฒกํฐ ์ ์ฅ์ ์์ฑ
def create_knowledge_base(chunks):
model_name = "sentence-transformers/all-mpnet-base-v2" # ์๋ฒ ๋ฉ ๋ชจ๋ธ์ ๋ช
์
embeddings = HuggingFaceEmbeddings(model_name=model_name)
return FAISS.from_texts(chunks, embeddings)
# Hugging Face ๋ชจ๋ธ ๋ก๋
def load_model():
model_name = "google/gemma-2-2b" # Hugging Face ๋ชจ๋ธ ID
access_token = os.getenv("HF_TOKEN")
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=access_token, clean_up_tokenization_spaces=False)
model = AutoModelForCausalLM.from_pretrained(model_name, token=access_token)
# ๋๋ฒ๊น
: GPU/CPU ํ์ธ ๋ฐ ์ถ๋ ฅ
if torch.cuda.is_available():
print("Using GPU")
device = 0
else:
print("Using CPU")
device = -1
# ๋๋ฒ๊น
: device ์ถ๋ ฅ
print(f"Device: {device}")
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.1, device=device)
except Exception as e:
print(f"Error loading model: {e}")
return None
# ๋ชจ๋ธ ์๋ต ์ฒ๋ฆฌ
def get_response_from_model(prompt):
try:
if "knowledge_base" not in st.session_state:
return "No PDF has been uploaded yet."
if "qa_chain" not in st.session_state:
return "QA chain is not initialized."
docs = st.session_state.knowledge_base.similarity_search(prompt)
print("docs:", docs) # ์ด๊น์ง ๋๋๋ฐ
# Chain์ invoke() ๋ฉ์๋ ์ฌ์ฉ
response = st.session_state.qa_chain.invoke(input_documents=docs, question=prompt)
print("response:", response)
if "Helpful Answer:" in response:
response = response.split("Helpful Answer:")[1].strip()
return response
except Exception as e:
return f"Error: {str(e)}"
# ํ์ด์ง UI
def main():
st.title("Welcome to GemmaPaperQA")
# PDF ์
๋ก๋ ์น์
with st.expander("Upload Your Paper", expanded=True):
paper = st.file_uploader("Upload Here!", type="pdf", label_visibility="hidden")
if paper:
st.write(f"Upload complete! File name: {paper.name}")
# ํ์ผ ํฌ๊ธฐ ํ์ธ
file_size = paper.size # ํ์ผ ํฌ๊ธฐ๋ฅผ ํ์ผ ํฌ์ธํฐ ์ด๋ ์์ด ํ์ธ
if file_size > 10 * 1024 * 1024: # 10MB ์ ํ
st.error("File is too large! Please upload a file smaller than 10MB.")
return
# PDF ํ
์คํธ ๋ฏธ๋ฆฌ๋ณด๊ธฐ
with st.spinner('Processing PDF...'):
try:
paper.seek(0)
contents = paper.read()
pdf_file = io.BytesIO(contents)
text = load_pdf(pdf_file)
if len(text.strip()) == 0:
st.error("The PDF appears to have no extractable text. Please check the file and try again.")
return
st.text_area("Preview of extracted text", text[:1000], height=200)
st.write(f"Total characters extracted: {len(text)}")
if st.button("Create Knowledge Base"):
chunks = split_text(text)
st.session_state.knowledge_base = create_knowledge_base(chunks)
print("knowledge_base:", st.session_state.knowledge_base)
if st.session_state.knowledge_base is None:
st.error("Failed to create knowledge base.")
return
# QA ์ฒด์ธ ์ค์
try:
pipe = load_model()
except Exception as e:
st.error(f"Error loading model: {e}")
return
llm = HuggingFacePipeline(pipeline=pipe)
st.session_state.qa_chain = load_qa_chain(llm, chain_type="map_rerank")
st.success("Knowledge base created! You can now ask questions.")
except Exception as e:
st.error(f"Failed to process the PDF: {str(e)}")
# ์ง๋ฌธ-์๋ต ์น์
if "knowledge_base" in st.session_state and "qa_chain" in st.session_state:
with st.expander("Ask Questions", expanded=True):
prompt = st.text_input("Chat here!")
if prompt:
print("prompt:", prompt)
response = get_response_from_model(prompt)
print("Response:", response)
if response:
st.write(f"**Assistant**: {response}")
# ์ฑ ์คํ
if __name__ == "__main__":
main()
|