Spaces:
Paused
Paused
File size: 5,899 Bytes
4ff376f 7f83f4e bbfcd34 4ff376f e2eb364 4ff376f 7f83f4e bbfcd34 7b74431 7f83f4e 4ff376f e2eb364 4ff376f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import io
import os
import torch
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.chains.question_answering import load_qa_chain
from langchain_huggingface import HuggingFaceEmbeddings, HuggingFacePipeline
from langchain_community.vectorstores import FAISS
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Global variables
knowledge_base = None
qa_chain = None
# PDF ํ์ผ ๋ก๋ ๋ฐ ํ
์คํธ ์ถ์ถ
def load_pdf(pdf_file):
pdf_reader = PdfReader(pdf_file)
text = "".join(page.extract_text() for page in pdf_reader.pages)
return text
# ํ
์คํธ๋ฅผ ์ฒญํฌ๋ก ๋ถํ
def split_text(text):
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
return text_splitter.split_text(text)
# FAISS ๋ฒกํฐ ์ ์ฅ์ ์์ฑ
def create_knowledge_base(chunks):
model_name = "sentence-transformers/all-mpnet-base-v2" # ์๋ฒ ๋ฉ ๋ชจ๋ธ์ ๋ช
์
embeddings = HuggingFaceEmbeddings(model_name=model_name)
return FAISS.from_texts(chunks, embeddings)
# Hugging Face ๋ชจ๋ธ ๋ก๋
def load_model():
model_name = "google/gemma-2-2b" # Hugging Face ๋ชจ๋ธ ID
access_token = os.getenv("HF_TOKEN")
try:
device = 0 if torch.cuda.is_available() else -1
tokenizer = AutoTokenizer.from_pretrained(model_name, token=access_token, clean_up_tokenization_spaces=False)
model = AutoModelForCausalLM.from_pretrained(model_name, token=access_token)
device = 0 if torch.cuda.is_available() else -1
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.1)
except Exception as e:
print(f"Error loading model: {e}")
return None
# QA ์ฒด์ธ ์ค์
def setup_qa_chain():
global qa_chain
try:
pipe = load_model()
except Exception as e:
print(f"Error loading model: {e}")
return
llm = HuggingFacePipeline(pipeline=pipe)
qa_chain = load_qa_chain(llm, chain_type="map_rerank")
# ๋ฉ์ธ ํ์ด์ง UI
def main_page():
st.title("Welcome to GemmaPaperQA")
st.subheader("Upload Your Paper")
paper = st.file_uploader("Upload Here!", type="pdf", label_visibility="hidden")
if paper:
st.write(f"Upload complete! File name: {paper.name}")
# ํ์ผ ํฌ๊ธฐ ํ์ธ
file_size = paper.size # ํ์ผ ํฌ๊ธฐ๋ฅผ ํ์ผ ํฌ์ธํฐ ์ด๋ ์์ด ํ์ธ
if file_size > 10 * 1024 * 1024: # 10MB ์ ํ
st.error("File is too large! Please upload a file smaller than 10MB.")
return
# ์ค๊ฐ ํ์ธ ์ ์ฐจ - PDF ๋ด์ฉ ๋ฏธ๋ฆฌ๋ณด๊ธฐ
with st.spinner('Processing PDF...'):
try:
paper.seek(0) # ํ์ผ ์ฝ๊ธฐ ํฌ์ธํฐ๋ฅผ ์ฒ์์ผ๋ก ๋๋๋ฆผ
contents = paper.read()
pdf_file = io.BytesIO(contents)
text = load_pdf(pdf_file)
# ํ
์คํธ๊ฐ ์ถ์ถ๋์ง ์์ ๊ฒฝ์ฐ ์๋ฌ ์ฒ๋ฆฌ
if len(text.strip()) == 0:
st.error("The PDF appears to have no extractable text. Please check the file and try again.")
return
st.text_area("Preview of extracted text", text[:1000], height=200)
st.write(f"Total characters extracted: {len(text)}")
global knowledge_base
if st.button("Proceed with this file"):
chunks = split_text(text)
knowledge_base = create_knowledge_base(chunks)
if knowledge_base is None:
st.error("Failed to create knowledge base.")
return
setup_qa_chain()
st.session_state.paper_name = paper.name[:-4]
st.session_state.page = "chat"
st.success("PDF successfully processed! You can now ask questions.")
except Exception as e:
st.error(f"Failed to process the PDF: {str(e)}")
# ์ฑํ
ํ์ด์ง UI
def chat_page():
st.title(f"Ask anything about {st.session_state.paper_name}")
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Chat here!"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
response = get_response_from_model(prompt)
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
if st.button("Go back to main page"):
st.session_state.page = "main"
# ๋ชจ๋ธ ์๋ต ์ฒ๋ฆฌ
def get_response_from_model(prompt):
try:
global knowledge_base, qa_chain
if not knowledge_base:
return "No PDF has been uploaded yet."
if not qa_chain:
return "QA chain is not initialized."
docs = knowledge_base.similarity_search(prompt)
response = qa_chain.run(input_documents=docs, question=prompt)
if "Helpful Answer:" in response:
response = response.split("Helpful Answer:")[1].strip()
return response
except Exception as e:
return f"Error: {str(e)}"
# ํ์ด์ง ์ค์
if "page" not in st.session_state:
st.session_state.page = "main"
if "paper_name" not in st.session_state:
st.session_state.paper_name = ""
# ํ์ด์ง ๋ ๋๋ง
if st.session_state.page == "main":
main_page()
elif st.session_state.page == "chat":
chat_page()
|