Spaces:
Runtime error
Runtime error
File size: 4,649 Bytes
4b4bf72 b3d1640 4b4bf72 b3d1640 4b4bf72 b3d1640 4b4bf72 b3d1640 ebe462c b3d1640 ebe462c b3d1640 4b4bf72 ebe462c 4b4bf72 b3d1640 4b4bf72 b3d1640 4b4bf72 ebe462c 4b4bf72 ebe462c 4b4bf72 ebe462c 4b4bf72 ebe462c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import streamlit as st
import pandas as pd
from transformers import T5Tokenizer, T5ForConditionalGeneration, pipeline
from bertopic import BERTopic
import torch
# Initialize ARAT5 model and tokenizer for topic modeling
tokenizer = T5Tokenizer.from_pretrained("UBC-NLP/araT5-base")
model = T5ForConditionalGeneration.from_pretrained("UBC-NLP/araT5-base")
# Emotion classification pipeline for Arabic (use an Arabic emotion classification model)
emotion_classifier = pipeline("text-classification", model="d0r13n/ara-bert-base-arabic-emotion")
# Function to get embeddings from ARAT5 for topic modeling
def generate_embeddings(texts):
# Tokenize the Arabic text for ARAT5
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512)
with torch.no_grad():
# Use ARAT5 to generate embeddings
outputs = model.encoder(input_ids=inputs['input_ids'])
# Extract the embeddings (mean of hidden states for simplicity)
return outputs.last_hidden_state.mean(dim=1).numpy()
# Function to process the CSV file and return emotion and topic model
def process_file(uploaded_file):
# Load CSV
df = pd.read_csv(uploaded_file)
# Display basic info about the CSV
st.write("CSV Loaded Successfully!")
st.write(f"Data Preview: {df.head()}")
# Ensure 'date' column is in datetime format and extract the year
df['date'] = pd.to_datetime(df['date'], errors='coerce') # Replace 'date' with your actual column name
df['year'] = df['date'].dt.year
# Modify this to use the 'poem' column that contains the Arabic poems
texts = df['poem'].dropna().tolist() # Replace 'poem' with your actual column name
# Emotion Classification: Classify emotions for each poem (Arabic)
emotions = [emotion_classifier(text)[0]['label'] for text in texts]
df['emotion'] = emotions
# Topic Modeling using ARAT5 embeddings
embeddings = generate_embeddings(texts)
topic_model = BERTopic()
topics, _ = topic_model.fit_transform(embeddings)
df['topic'] = topics
# Return the processed dataframe
return df
# Streamlit App
st.title("Arabic Poem Topic Modeling & Emotion Classification with ARAT5")
st.write("Upload a CSV file to perform topic modeling and emotion classification on Arabic poems.")
# File upload widget
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
# If file is uploaded, process and display results
if uploaded_file is not None:
result_df = process_file(uploaded_file)
# Show date selection widgets
st.write("### Filter by Date Range")
start_date = st.date_input("Start Date", value=pd.to_datetime(result_df['date'].min()))
end_date = st.date_input("End Date", value=pd.to_datetime(result_df['date'].max()))
# Filter data based on selected date range
filtered_df = result_df[(result_df['date'] >= start_date) & (result_df['date'] <= end_date)]
# Display filtered data
st.write(f"Filtered Data (Poems from {start_date} to {end_date}):")
st.write(filtered_df[['poet_name', 'era', 'poem', 'emotion', 'topic', 'date']])
# Create buttons to show different summaries
summary_type = st.radio("Select Summary Type:",
("Emotion and Topic Summary by Date Range",
"Global Emotion and Topic Summary"))
# Display the selected summary
if summary_type == "Emotion and Topic Summary by Date Range":
st.write("Emotion and Topic Summary for Selected Date Range:")
# Emotion Distribution in Date Range
emotion_counts = filtered_df['emotion'].value_counts()
st.write("Emotion Counts in Date Range:")
st.write(emotion_counts)
# Topic Distribution in Date Range
topic_counts = filtered_df['topic'].value_counts()
st.write("Topic Counts in Date Range:")
st.write(topic_counts)
# Visualize emotion distribution over the selected range (optional)
st.bar_chart(emotion_counts, use_container_width=True)
# Visualize topic distribution over the selected range (optional)
st.bar_chart(topic_counts, use_container_width=True)
elif summary_type == "Global Emotion and Topic Summary":
st.write("Global Emotion and Topic Summary (All Poems):")
global_emotion_count = result_df['emotion'].value_counts().to_dict()
global_topic_count = result_df['topic'].value_counts().to_dict()
st.write(f"Emotion Distribution: {global_emotion_count}")
st.write(f"Topic Distribution: {global_topic_count}")
|