SoLProject / app.py
kambris's picture
Update app.py
b2576ed verified
raw
history blame
9.93 kB
import streamlit as st
import pandas as pd
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, pipeline
from bertopic import BERTopic
import torch
import numpy as np
from collections import Counter
import os
# Configure page
st.set_page_config(
page_title="Arabic Poem Analysis",
page_icon="๐Ÿ“š",
layout="wide"
)
@st.cache_resource
def load_models():
"""Load and cache the models to prevent reloading"""
bert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv2")
bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
emotion_model = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
emotion_classifier = pipeline("text-classification", model=emotion_model, tokenizer=bert_tokenizer)
return bert_tokenizer, bert_model, emotion_classifier
# Load models
try:
bert_tokenizer, bert_model, emotion_classifier = load_models()
st.success("Models loaded successfully!")
except Exception as e:
st.error(f"Error loading models: {str(e)}")
st.stop()
# Define emotion labels mapping
EMOTION_LABELS = {
'LABEL_0': 'Negative',
'LABEL_1': 'Positive',
'LABEL_2': 'Neutral'
}
def chunk_long_text(text, tokenizer, max_length=512):
"""Split text into chunks respecting token limit."""
tokens = tokenizer.encode(text, add_special_tokens=False)
chunks = []
text_chunks = []
for i in range(0, len(tokens), max_length-2):
chunk = tokens[i:i + max_length-2]
full_chunk = [tokenizer.cls_token_id] + chunk + [tokenizer.sep_token_id]
chunks.append(full_chunk)
text_chunks.append(tokenizer.decode(chunk))
return chunks, text_chunks
def get_embedding_for_text(text, tokenizer, model):
"""Get embedding for a text, handling long sequences."""
_, text_chunks = chunk_long_text(text, tokenizer)
chunk_embeddings = []
for chunk in text_chunks:
inputs = tokenizer(chunk,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512)
inputs = {k: v.to(model.device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
chunk_embeddings.append(embedding[0])
if chunk_embeddings:
return np.mean(chunk_embeddings, axis=0)
return np.zeros(model.config.hidden_size)
def generate_embeddings(texts, tokenizer, model):
"""Generate embeddings for a list of texts."""
embeddings = []
for text in texts:
try:
embedding = get_embedding_for_text(text, tokenizer, model)
embeddings.append(embedding)
except Exception as e:
st.warning(f"Error processing text: {str(e)}")
embeddings.append(np.zeros(model.config.hidden_size))
return np.array(embeddings)
def classify_emotion(text, tokenizer, classifier):
"""Classify emotion for a text using majority voting."""
try:
_, text_chunks = chunk_long_text(text, tokenizer)
chunk_emotions = []
for chunk in text_chunks:
result = classifier(chunk, max_length=512, truncation=True)[0]
chunk_emotions.append(result['label'])
if chunk_emotions:
final_emotion = Counter(chunk_emotions).most_common(1)[0][0]
return final_emotion
return "unknown"
except Exception as e:
st.warning(f"Error in emotion classification: {str(e)}")
return "unknown"
def format_topics(topic_model, topic_counts):
"""Format topics for display."""
formatted_topics = []
for topic_num, count in topic_counts:
if topic_num == -1:
topic_label = "Miscellaneous"
else:
words = topic_model.get_topic(topic_num)
topic_label = " | ".join([word for word, _ in words[:3]])
formatted_topics.append({
'topic': topic_label,
'count': count
})
return formatted_topics
def format_emotions(emotion_counts):
"""Format emotions for display."""
formatted_emotions = []
for label, count in emotion_counts:
emotion = EMOTION_LABELS.get(label, label)
formatted_emotions.append({
'emotion': emotion,
'count': count
})
return formatted_emotions
def process_and_summarize(df, top_n=50):
"""Process the data and generate summaries."""
summaries = []
# Initialize BERTopic
topic_model = BERTopic(
language="arabic",
calculate_probabilities=True,
min_topic_size=5,
verbose=True
)
# Group by country
for country, group in df.groupby('country'):
progress_text = f"Processing poems for {country}..."
progress_bar = st.progress(0, text=progress_text)
texts = group['poem'].dropna().tolist()
batch_size = 10
all_emotions = []
# Generate embeddings
embeddings = generate_embeddings(texts, bert_tokenizer, bert_model)
progress_bar.progress(0.33, text="Generating embeddings...")
# Process emotions
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i + batch_size]
batch_emotions = [classify_emotion(text, bert_tokenizer, emotion_classifier)
for text in batch_texts]
all_emotions.extend(batch_emotions)
progress_bar.progress(0.66, text="Classifying emotions...")
try:
# Fit topic model
topics, _ = topic_model.fit_transform(texts, embeddings)
# Format results
top_topics = format_topics(topic_model, Counter(topics).most_common(top_n))
top_emotions = format_emotions(Counter(all_emotions).most_common(top_n))
summaries.append({
'country': country,
'total_poems': len(texts),
'top_topics': top_topics,
'top_emotions': top_emotions
})
progress_bar.progress(1.0, text="Processing complete!")
except Exception as e:
st.warning(f"Could not generate topics for {country}: {str(e)}")
continue
return summaries, topic_model
# Main app interface
st.title("๐Ÿ“š Arabic Poem Analysis")
st.write("Upload a CSV or Excel file containing Arabic poems with columns `country` and `poem`.")
# File upload
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])
if uploaded_file is not None:
try:
# Read the file
if uploaded_file.name.endswith('.csv'):
df = pd.read_csv(uploaded_file)
else:
df = pd.read_excel(uploaded_file)
# Validate columns
required_columns = ['country', 'poem']
if not all(col in df.columns for col in required_columns):
st.error("File must contain 'country' and 'poem' columns.")
st.stop()
# Clean data
df['country'] = df['country'].str.strip()
df = df.dropna(subset=['country', 'poem'])
# Process data
top_n = st.number_input("Number of top topics/emotions to display:",
min_value=1, max_value=100, value=10)
if st.button("Process Data"):
with st.spinner("Processing your data..."):
summaries, topic_model = process_and_summarize(df, top_n=top_n)
if summaries:
st.success("Analysis complete!")
# Display results in tabs
tab1, tab2 = st.tabs(["Country Summaries", "Global Topics"])
with tab1:
for summary in summaries:
with st.expander(f"๐Ÿ“ {summary['country']} ({summary['total_poems']} poems)"):
col1, col2 = st.columns(2)
with col1:
st.subheader("Top Topics")
for topic in summary['top_topics']:
st.write(f"โ€ข {topic['topic']}: {topic['count']} poems")
with col2:
st.subheader("Emotions")
for emotion in summary['top_emotions']:
st.write(f"โ€ข {emotion['emotion']}: {emotion['count']} poems")
with tab2:
st.subheader("Global Topic Distribution")
topic_info = topic_model.get_topic_info()
for _, row in topic_info.iterrows():
if row['Topic'] == -1:
topic_name = "Miscellaneous"
else:
words = topic_model.get_topic(row['Topic'])
topic_name = " | ".join([word for word, _ in words[:3]])
st.write(f"โ€ข Topic {row['Topic']}: {topic_name} ({row['Count']} poems)")
except Exception as e:
st.error(f"Error processing file: {str(e)}")
else:
st.info("๐Ÿ‘† Upload a file to get started!")
# Example format
st.write("### Expected File Format:")
example_df = pd.DataFrame({
'country': ['Egypt', 'Saudi Arabia'],
'poem': ['ู‚ุตูŠุฏุฉ ู…ุตุฑูŠุฉ', 'ู‚ุตูŠุฏุฉ ุณุนูˆุฏูŠุฉ']
})
st.dataframe(example_df)