Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,14 +5,31 @@ from bertopic import BERTopic
|
|
| 5 |
import torch
|
| 6 |
import numpy as np
|
| 7 |
from collections import Counter
|
|
|
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Define emotion labels mapping
|
| 18 |
EMOTION_LABELS = {
|
|
@@ -21,80 +38,67 @@ EMOTION_LABELS = {
|
|
| 21 |
'LABEL_2': 'Neutral'
|
| 22 |
}
|
| 23 |
|
| 24 |
-
def chunk_long_text(text, max_length=512):
|
| 25 |
-
"""
|
| 26 |
-
|
| 27 |
-
Returns both tokenized chunks and decoded text chunks.
|
| 28 |
-
"""
|
| 29 |
-
# Tokenize the entire text
|
| 30 |
-
tokens = bert_tokenizer.encode(text, add_special_tokens=False)
|
| 31 |
chunks = []
|
| 32 |
text_chunks = []
|
| 33 |
|
| 34 |
-
# Split into chunks of max_length-2 to account for [CLS] and [SEP]
|
| 35 |
for i in range(0, len(tokens), max_length-2):
|
| 36 |
chunk = tokens[i:i + max_length-2]
|
| 37 |
-
|
| 38 |
-
full_chunk = [bert_tokenizer.cls_token_id] + chunk + [bert_tokenizer.sep_token_id]
|
| 39 |
chunks.append(full_chunk)
|
| 40 |
-
|
| 41 |
-
text_chunks.append(bert_tokenizer.decode(chunk))
|
| 42 |
|
| 43 |
return chunks, text_chunks
|
| 44 |
|
| 45 |
-
def get_embedding_for_text(text):
|
| 46 |
-
"""Get embedding for a text, handling long sequences
|
| 47 |
-
_, text_chunks = chunk_long_text(text)
|
| 48 |
chunk_embeddings = []
|
| 49 |
|
| 50 |
for chunk in text_chunks:
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
inputs = {k: v.to(bert_model.device) for k, v in inputs.items()}
|
| 58 |
|
| 59 |
with torch.no_grad():
|
| 60 |
-
outputs =
|
| 61 |
|
| 62 |
-
# Get [CLS] token embedding
|
| 63 |
embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
|
| 64 |
chunk_embeddings.append(embedding[0])
|
| 65 |
|
| 66 |
-
# Average embeddings from all chunks
|
| 67 |
if chunk_embeddings:
|
| 68 |
return np.mean(chunk_embeddings, axis=0)
|
| 69 |
-
return np.zeros(
|
| 70 |
|
| 71 |
-
def generate_embeddings(texts):
|
| 72 |
"""Generate embeddings for a list of texts."""
|
| 73 |
embeddings = []
|
| 74 |
|
| 75 |
for text in texts:
|
| 76 |
try:
|
| 77 |
-
embedding = get_embedding_for_text(text)
|
| 78 |
embeddings.append(embedding)
|
| 79 |
except Exception as e:
|
| 80 |
st.warning(f"Error processing text: {str(e)}")
|
| 81 |
-
embeddings.append(np.zeros(
|
| 82 |
|
| 83 |
return np.array(embeddings)
|
| 84 |
|
| 85 |
-
def classify_emotion(text):
|
| 86 |
-
"""
|
| 87 |
-
Classify emotion for a text, handling long sequences by voting among chunks.
|
| 88 |
-
"""
|
| 89 |
try:
|
| 90 |
-
_, text_chunks = chunk_long_text(text)
|
| 91 |
chunk_emotions = []
|
| 92 |
|
| 93 |
for chunk in text_chunks:
|
| 94 |
-
result =
|
| 95 |
chunk_emotions.append(result['label'])
|
| 96 |
|
| 97 |
-
# Use majority voting for final emotion
|
| 98 |
if chunk_emotions:
|
| 99 |
final_emotion = Counter(chunk_emotions).most_common(1)[0][0]
|
| 100 |
return final_emotion
|
|
@@ -105,7 +109,7 @@ def classify_emotion(text):
|
|
| 105 |
return "unknown"
|
| 106 |
|
| 107 |
def format_topics(topic_model, topic_counts):
|
| 108 |
-
"""
|
| 109 |
formatted_topics = []
|
| 110 |
for topic_num, count in topic_counts:
|
| 111 |
if topic_num == -1:
|
|
@@ -121,7 +125,7 @@ def format_topics(topic_model, topic_counts):
|
|
| 121 |
return formatted_topics
|
| 122 |
|
| 123 |
def format_emotions(emotion_counts):
|
| 124 |
-
"""
|
| 125 |
formatted_emotions = []
|
| 126 |
for label, count in emotion_counts:
|
| 127 |
emotion = EMOTION_LABELS.get(label, label)
|
|
@@ -131,28 +135,11 @@ def format_emotions(emotion_counts):
|
|
| 131 |
})
|
| 132 |
return formatted_emotions
|
| 133 |
|
| 134 |
-
def process_and_summarize(
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
df = pd.read_csv(uploaded_file)
|
| 138 |
-
elif uploaded_file.name.endswith(".xlsx"):
|
| 139 |
-
df = pd.read_excel(uploaded_file)
|
| 140 |
-
else:
|
| 141 |
-
st.error("Unsupported file format.")
|
| 142 |
-
return None, None
|
| 143 |
-
|
| 144 |
-
# Validate required columns
|
| 145 |
-
required_columns = ['country', 'poem']
|
| 146 |
-
missing_columns = [col for col in required_columns if col not in df.columns]
|
| 147 |
-
if missing_columns:
|
| 148 |
-
st.error(f"Missing columns: {', '.join(missing_columns)}")
|
| 149 |
-
return None, None
|
| 150 |
-
|
| 151 |
-
# Parse and preprocess the file
|
| 152 |
-
df['country'] = df['country'].str.strip()
|
| 153 |
-
df = df.dropna(subset=['country', 'poem'])
|
| 154 |
|
| 155 |
-
# Initialize BERTopic
|
| 156 |
topic_model = BERTopic(
|
| 157 |
language="arabic",
|
| 158 |
calculate_probabilities=True,
|
|
@@ -161,27 +148,28 @@ def process_and_summarize(uploaded_file, top_n=50):
|
|
| 161 |
)
|
| 162 |
|
| 163 |
# Group by country
|
| 164 |
-
summaries = []
|
| 165 |
for country, group in df.groupby('country'):
|
| 166 |
-
|
| 167 |
-
|
|
|
|
| 168 |
texts = group['poem'].dropna().tolist()
|
| 169 |
batch_size = 10
|
| 170 |
all_emotions = []
|
| 171 |
|
| 172 |
-
# Generate embeddings
|
| 173 |
-
|
| 174 |
-
|
| 175 |
|
| 176 |
-
# Process emotions
|
| 177 |
for i in range(0, len(texts), batch_size):
|
| 178 |
batch_texts = texts[i:i + batch_size]
|
| 179 |
-
|
| 180 |
-
|
| 181 |
all_emotions.extend(batch_emotions)
|
|
|
|
| 182 |
|
| 183 |
try:
|
| 184 |
-
|
| 185 |
topics, _ = topic_model.fit_transform(texts, embeddings)
|
| 186 |
|
| 187 |
# Format results
|
|
@@ -194,10 +182,88 @@ def process_and_summarize(uploaded_file, top_n=50):
|
|
| 194 |
'top_topics': top_topics,
|
| 195 |
'top_emotions': top_emotions
|
| 196 |
})
|
|
|
|
| 197 |
except Exception as e:
|
| 198 |
st.warning(f"Could not generate topics for {country}: {str(e)}")
|
| 199 |
continue
|
| 200 |
|
| 201 |
return summaries, topic_model
|
| 202 |
|
| 203 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import torch
|
| 6 |
import numpy as np
|
| 7 |
from collections import Counter
|
| 8 |
+
import os
|
| 9 |
|
| 10 |
+
# Configure page
|
| 11 |
+
st.set_page_config(
|
| 12 |
+
page_title="Arabic Poem Analysis",
|
| 13 |
+
page_icon="📚",
|
| 14 |
+
layout="wide"
|
| 15 |
+
)
|
| 16 |
|
| 17 |
+
@st.cache_resource
|
| 18 |
+
def load_models():
|
| 19 |
+
"""Load and cache the models to prevent reloading"""
|
| 20 |
+
bert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv2")
|
| 21 |
+
bert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv2")
|
| 22 |
+
emotion_model = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sentiment")
|
| 23 |
+
emotion_classifier = pipeline("text-classification", model=emotion_model, tokenizer=bert_tokenizer)
|
| 24 |
+
return bert_tokenizer, bert_model, emotion_classifier
|
| 25 |
+
|
| 26 |
+
# Load models
|
| 27 |
+
try:
|
| 28 |
+
bert_tokenizer, bert_model, emotion_classifier = load_models()
|
| 29 |
+
st.success("Models loaded successfully!")
|
| 30 |
+
except Exception as e:
|
| 31 |
+
st.error(f"Error loading models: {str(e)}")
|
| 32 |
+
st.stop()
|
| 33 |
|
| 34 |
# Define emotion labels mapping
|
| 35 |
EMOTION_LABELS = {
|
|
|
|
| 38 |
'LABEL_2': 'Neutral'
|
| 39 |
}
|
| 40 |
|
| 41 |
+
def chunk_long_text(text, tokenizer, max_length=512):
|
| 42 |
+
"""Split text into chunks respecting token limit."""
|
| 43 |
+
tokens = tokenizer.encode(text, add_special_tokens=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
chunks = []
|
| 45 |
text_chunks = []
|
| 46 |
|
|
|
|
| 47 |
for i in range(0, len(tokens), max_length-2):
|
| 48 |
chunk = tokens[i:i + max_length-2]
|
| 49 |
+
full_chunk = [tokenizer.cls_token_id] + chunk + [tokenizer.sep_token_id]
|
|
|
|
| 50 |
chunks.append(full_chunk)
|
| 51 |
+
text_chunks.append(tokenizer.decode(chunk))
|
|
|
|
| 52 |
|
| 53 |
return chunks, text_chunks
|
| 54 |
|
| 55 |
+
def get_embedding_for_text(text, tokenizer, model):
|
| 56 |
+
"""Get embedding for a text, handling long sequences."""
|
| 57 |
+
_, text_chunks = chunk_long_text(text, tokenizer)
|
| 58 |
chunk_embeddings = []
|
| 59 |
|
| 60 |
for chunk in text_chunks:
|
| 61 |
+
inputs = tokenizer(chunk,
|
| 62 |
+
return_tensors="pt",
|
| 63 |
+
padding=True,
|
| 64 |
+
truncation=True,
|
| 65 |
+
max_length=512)
|
| 66 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
|
|
|
| 67 |
|
| 68 |
with torch.no_grad():
|
| 69 |
+
outputs = model(**inputs)
|
| 70 |
|
|
|
|
| 71 |
embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()
|
| 72 |
chunk_embeddings.append(embedding[0])
|
| 73 |
|
|
|
|
| 74 |
if chunk_embeddings:
|
| 75 |
return np.mean(chunk_embeddings, axis=0)
|
| 76 |
+
return np.zeros(model.config.hidden_size)
|
| 77 |
|
| 78 |
+
def generate_embeddings(texts, tokenizer, model):
|
| 79 |
"""Generate embeddings for a list of texts."""
|
| 80 |
embeddings = []
|
| 81 |
|
| 82 |
for text in texts:
|
| 83 |
try:
|
| 84 |
+
embedding = get_embedding_for_text(text, tokenizer, model)
|
| 85 |
embeddings.append(embedding)
|
| 86 |
except Exception as e:
|
| 87 |
st.warning(f"Error processing text: {str(e)}")
|
| 88 |
+
embeddings.append(np.zeros(model.config.hidden_size))
|
| 89 |
|
| 90 |
return np.array(embeddings)
|
| 91 |
|
| 92 |
+
def classify_emotion(text, tokenizer, classifier):
|
| 93 |
+
"""Classify emotion for a text using majority voting."""
|
|
|
|
|
|
|
| 94 |
try:
|
| 95 |
+
_, text_chunks = chunk_long_text(text, tokenizer)
|
| 96 |
chunk_emotions = []
|
| 97 |
|
| 98 |
for chunk in text_chunks:
|
| 99 |
+
result = classifier(chunk, max_length=512, truncation=True)[0]
|
| 100 |
chunk_emotions.append(result['label'])
|
| 101 |
|
|
|
|
| 102 |
if chunk_emotions:
|
| 103 |
final_emotion = Counter(chunk_emotions).most_common(1)[0][0]
|
| 104 |
return final_emotion
|
|
|
|
| 109 |
return "unknown"
|
| 110 |
|
| 111 |
def format_topics(topic_model, topic_counts):
|
| 112 |
+
"""Format topics for display."""
|
| 113 |
formatted_topics = []
|
| 114 |
for topic_num, count in topic_counts:
|
| 115 |
if topic_num == -1:
|
|
|
|
| 125 |
return formatted_topics
|
| 126 |
|
| 127 |
def format_emotions(emotion_counts):
|
| 128 |
+
"""Format emotions for display."""
|
| 129 |
formatted_emotions = []
|
| 130 |
for label, count in emotion_counts:
|
| 131 |
emotion = EMOTION_LABELS.get(label, label)
|
|
|
|
| 135 |
})
|
| 136 |
return formatted_emotions
|
| 137 |
|
| 138 |
+
def process_and_summarize(df, top_n=50):
|
| 139 |
+
"""Process the data and generate summaries."""
|
| 140 |
+
summaries = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
# Initialize BERTopic
|
| 143 |
topic_model = BERTopic(
|
| 144 |
language="arabic",
|
| 145 |
calculate_probabilities=True,
|
|
|
|
| 148 |
)
|
| 149 |
|
| 150 |
# Group by country
|
|
|
|
| 151 |
for country, group in df.groupby('country'):
|
| 152 |
+
progress_text = f"Processing poems for {country}..."
|
| 153 |
+
progress_bar = st.progress(0, text=progress_text)
|
| 154 |
+
|
| 155 |
texts = group['poem'].dropna().tolist()
|
| 156 |
batch_size = 10
|
| 157 |
all_emotions = []
|
| 158 |
|
| 159 |
+
# Generate embeddings
|
| 160 |
+
embeddings = generate_embeddings(texts, bert_tokenizer, bert_model)
|
| 161 |
+
progress_bar.progress(0.33, text="Generating embeddings...")
|
| 162 |
|
| 163 |
+
# Process emotions
|
| 164 |
for i in range(0, len(texts), batch_size):
|
| 165 |
batch_texts = texts[i:i + batch_size]
|
| 166 |
+
batch_emotions = [classify_emotion(text, bert_tokenizer, emotion_classifier)
|
| 167 |
+
for text in batch_texts]
|
| 168 |
all_emotions.extend(batch_emotions)
|
| 169 |
+
progress_bar.progress(0.66, text="Classifying emotions...")
|
| 170 |
|
| 171 |
try:
|
| 172 |
+
# Fit topic model
|
| 173 |
topics, _ = topic_model.fit_transform(texts, embeddings)
|
| 174 |
|
| 175 |
# Format results
|
|
|
|
| 182 |
'top_topics': top_topics,
|
| 183 |
'top_emotions': top_emotions
|
| 184 |
})
|
| 185 |
+
progress_bar.progress(1.0, text="Processing complete!")
|
| 186 |
except Exception as e:
|
| 187 |
st.warning(f"Could not generate topics for {country}: {str(e)}")
|
| 188 |
continue
|
| 189 |
|
| 190 |
return summaries, topic_model
|
| 191 |
|
| 192 |
+
# Main app interface
|
| 193 |
+
st.title("📚 Arabic Poem Analysis")
|
| 194 |
+
st.write("Upload a CSV or Excel file containing Arabic poems with columns `country` and `poem`.")
|
| 195 |
+
|
| 196 |
+
# File upload
|
| 197 |
+
uploaded_file = st.file_uploader("Choose a file", type=["csv", "xlsx"])
|
| 198 |
+
|
| 199 |
+
if uploaded_file is not None:
|
| 200 |
+
try:
|
| 201 |
+
# Read the file
|
| 202 |
+
if uploaded_file.name.endswith('.csv'):
|
| 203 |
+
df = pd.read_csv(uploaded_file)
|
| 204 |
+
else:
|
| 205 |
+
df = pd.read_excel(uploaded_file)
|
| 206 |
+
|
| 207 |
+
# Validate columns
|
| 208 |
+
required_columns = ['country', 'poem']
|
| 209 |
+
if not all(col in df.columns for col in required_columns):
|
| 210 |
+
st.error("File must contain 'country' and 'poem' columns.")
|
| 211 |
+
st.stop()
|
| 212 |
+
|
| 213 |
+
# Clean data
|
| 214 |
+
df['country'] = df['country'].str.strip()
|
| 215 |
+
df = df.dropna(subset=['country', 'poem'])
|
| 216 |
+
|
| 217 |
+
# Process data
|
| 218 |
+
top_n = st.number_input("Number of top topics/emotions to display:",
|
| 219 |
+
min_value=1, max_value=100, value=10)
|
| 220 |
+
|
| 221 |
+
if st.button("Process Data"):
|
| 222 |
+
with st.spinner("Processing your data..."):
|
| 223 |
+
summaries, topic_model = process_and_summarize(df, top_n=top_n)
|
| 224 |
+
|
| 225 |
+
if summaries:
|
| 226 |
+
st.success("Analysis complete!")
|
| 227 |
+
|
| 228 |
+
# Display results in tabs
|
| 229 |
+
tab1, tab2 = st.tabs(["Country Summaries", "Global Topics"])
|
| 230 |
+
|
| 231 |
+
with tab1:
|
| 232 |
+
for summary in summaries:
|
| 233 |
+
with st.expander(f"📍 {summary['country']} ({summary['total_poems']} poems)"):
|
| 234 |
+
col1, col2 = st.columns(2)
|
| 235 |
+
|
| 236 |
+
with col1:
|
| 237 |
+
st.subheader("Top Topics")
|
| 238 |
+
for topic in summary['top_topics']:
|
| 239 |
+
st.write(f"• {topic['topic']}: {topic['count']} poems")
|
| 240 |
+
|
| 241 |
+
with col2:
|
| 242 |
+
st.subheader("Emotions")
|
| 243 |
+
for emotion in summary['top_emotions']:
|
| 244 |
+
st.write(f"• {emotion['emotion']}: {emotion['count']} poems")
|
| 245 |
+
|
| 246 |
+
with tab2:
|
| 247 |
+
st.subheader("Global Topic Distribution")
|
| 248 |
+
topic_info = topic_model.get_topic_info()
|
| 249 |
+
for _, row in topic_info.iterrows():
|
| 250 |
+
if row['Topic'] == -1:
|
| 251 |
+
topic_name = "Miscellaneous"
|
| 252 |
+
else:
|
| 253 |
+
words = topic_model.get_topic(row['Topic'])
|
| 254 |
+
topic_name = " | ".join([word for word, _ in words[:3]])
|
| 255 |
+
st.write(f"• Topic {row['Topic']}: {topic_name} ({row['Count']} poems)")
|
| 256 |
+
|
| 257 |
+
except Exception as e:
|
| 258 |
+
st.error(f"Error processing file: {str(e)}")
|
| 259 |
+
else:
|
| 260 |
+
st.info("👆 Upload a file to get started!")
|
| 261 |
+
|
| 262 |
+
# Example format
|
| 263 |
+
st.write("### Expected File Format:")
|
| 264 |
+
example_df = pd.DataFrame({
|
| 265 |
+
'country': ['Egypt', 'Saudi Arabia'],
|
| 266 |
+
'poem': ['قصيدة مصرية', 'قصيدة سعودية']
|
| 267 |
+
})
|
| 268 |
+
st.dataframe(example_df)
|
| 269 |
+
|