Spaces:
Sleeping
Sleeping
import streamlit as st | |
import requests | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
# Load Hugging Face Model | |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B", trust_remote_code=True) | |
def generate_text(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=1024) | |
with torch.no_grad(): | |
outputs = model.generate(**inputs, max_length=1024, pad_token_id=tokenizer.eos_token_id) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Function to fetch Wikipedia summary | |
def search_travel_info(destination): | |
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{destination}" | |
response = requests.get(url) | |
if response.status_code == 200: | |
data = response.json() | |
return data.get("extract", "No information found.") | |
return "No results found." | |
# Function to generate travel itinerary | |
def generate_itinerary(start_location, budget, duration, destination, purpose, preferences): | |
search_results = search_travel_info(destination) | |
# System Prompt | |
system_prompt = "You are an expert travel guide. Your goal is to create a well-structured, detailed itinerary based on the user's preferences." | |
# User Prompt | |
user_prompt = f""" | |
{system_prompt} | |
### π·οΈ **Traveler Information**: | |
- **Budget**: {budget} | |
- **Purpose of Travel**: {purpose} | |
- **Preferences**: {preferences} | |
### π **Day-wise Itinerary**: | |
- π Day-by-day activities, including morning, afternoon, and evening plans | |
- π Must-visit attractions (famous landmarks + hidden gems) | |
- π½οΈ Local cuisines and top dining recommendations | |
- π¨ Best places to stay (based on budget) | |
- π Transportation options (from {start_location} to {destination} and local travel) | |
### π **Additional Considerations**: | |
- π Cultural experiences, festivals, or seasonal events | |
- ποΈ Shopping and souvenir recommendations | |
- πΉ Safety tips, best times to visit, and local customs | |
- πΊοΈ Alternative plans for bad weather days | |
### βΉοΈ **Additional Information from External Sources**: | |
{search_results} | |
Make sure the itinerary is engaging, practical, and customized based on the userβs budget and preferences. | |
""" | |
# Generate Response | |
return generate_text(user_prompt) | |
# Streamlit UI | |
st.title("AI-Powered Travel Planner") | |
st.write("Plan your next trip with AI!") | |
start_location = st.text_input("Starting Location") | |
destination = st.text_input("Destination") | |
budget = st.selectbox("Select Budget", ["Low", "Moderate", "Luxury"]) | |
duration = st.number_input("Trip Duration (days)", min_value=1, max_value=30, value=3) | |
purpose = st.text_area("Purpose of Trip") | |
preferences = st.text_area("Your Preferences (e.g., adventure, food, history)") | |
if st.button("Generate Itinerary"): | |
if start_location and destination and purpose and preferences: | |
itinerary = generate_itinerary(start_location, budget, duration, destination, purpose, preferences) | |
st.subheader("Your AI-Generated Itinerary:") | |
st.write(itinerary) | |
else: | |
st.warning("Please fill in all fields.") | |