deep / app.py
karthi311's picture
Update app.py
56ef556 verified
import os
import tempfile
import numpy as np
from subprocess import Popen, PIPE
import torch
import gradio as gr
from pydub import AudioSegment
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
from transformers.pipelines.audio_utils import ffmpeg_read
from sentence_transformers import SentenceTransformer, util
import spacy
import spacy.cli
spacy.cli.download("en_core_web_sm")
# Constants
MODEL_NAME = "openai/whisper-large-v3-turbo"
BATCH_SIZE = 8
FILE_LIMIT_MB = 1000
device = 0 if torch.cuda.is_available() else "cpu"
# Whisper pipeline
whisper_pipeline = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
# NLP model and other helpers
nlp = spacy.load("en_core_web_sm")
embedder = SentenceTransformer("all-MiniLM-L6-v2")
# Summarization model
summarizer_model_name = "Mahalingam/DistilBart-Med-Summary"
tokenizer = AutoTokenizer.from_pretrained(summarizer_model_name)
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained(summarizer_model_name)
summarizer = pipeline("summarization", model=summarizer_model, tokenizer=tokenizer)
# SOAP prompts and embeddings
soap_prompts = {
"subjective": "Personal reports, symptoms described by patients, or personal health concerns. Details reflecting individual symptoms or health descriptions.",
"objective": "Observable facts, clinical findings, professional observations, specific medical specialties, and diagnoses.",
"assessment": "Clinical assessments, expertise-based opinions on conditions, and significance of medical interventions. Focused on medical evaluations or patient condition summaries.",
"plan": "Future steps, recommendations for treatment, follow-up instructions, and healthcare management plans."
}
soap_embeddings = {section: embedder.encode(prompt, convert_to_tensor=True) for section, prompt in soap_prompts.items()}
# Convert MP4 to MP3
def convert_mp4_to_mp3(mp4_path, mp3_path):
try:
audio = AudioSegment.from_file(mp4_path, format="mp4")
audio.export(mp3_path, format="mp3")
except Exception as e:
raise RuntimeError(f"Error converting MP4 to MP3: {e}")
# Transcribe audio
def transcribe_audio(audio_path):
try:
if not os.path.exists(audio_path):
raise FileNotFoundError(f"Audio file not found: {audio_path}")
# Read and process the audio file
audio_array = ffmpeg_read(audio_path, whisper_pipeline.feature_extractor.sampling_rate)
# Ensure audio data is a numpy array of type float32
if not isinstance(audio_array, np.ndarray):
raise TypeError("Audio data should be a numpy array.")
audio_array = audio_array.astype(np.float32)
# Create input dictionary for Whisper
inputs = {
"array": audio_array,
"sampling_rate": whisper_pipeline.feature_extractor.sampling_rate,
}
# Perform transcription
result = whisper_pipeline(inputs, batch_size=BATCH_SIZE, return_timestamps=False)
return result["text"]
except Exception as e:
return f"Error during transcription: {e}"
# Classify the sentence to the correct SOAP section
def classify_sentence(sentence):
similarities = {section: util.pytorch_cos_sim(embedder.encode(sentence), soap_embeddings[section]) for section in soap_prompts.keys()}
return max(similarities, key=similarities.get)
# Summarize the section if it's too long
def summarize_section(section_text):
if len(section_text.split()) < 50:
return section_text
target_length = int(len(section_text.split()) * 0.50)
inputs = tokenizer.encode(section_text, return_tensors="pt", truncation=True, max_length=1024)
summary_ids = summarizer_model.generate(
inputs,
max_length=target_length,
min_length=int(target_length * 0.45),
length_penalty=1.0,
num_beams=4
)
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# Analyze the SOAP content and divide into sections
def soap_analysis(text):
doc = nlp(text)
soap_note = {section: "" for section in soap_prompts.keys()}
for sentence in doc.sents:
section = classify_sentence(sentence.text)
soap_note[section] += sentence.text + " "
# Summarize each section of the SOAP note
for section in soap_note:
soap_note[section] = summarize_section(soap_note[section].strip())
return format_soap_output(soap_note)
# Format the SOAP note output
def format_soap_output(soap_note):
return (
f"Subjective:\n{soap_note['subjective']}\n\n"
f"Objective:\n{soap_note['objective']}\n\n"
f"Assessment:\n{soap_note['assessment']}\n\n"
f"Plan:\n{soap_note['plan']}\n"
)
# Process file function for audio/video to SOAP
def process_file(file, user_prompt):
# Determine file type and convert if necessary
if file.name.endswith(".mp4"):
temp_mp3_path = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
try:
convert_mp4_to_mp3(file.name, temp_mp3_path)
audio_path = temp_mp3_path
except Exception as e:
return f"Error during MP4 to MP3 conversion: {e}", "", ""
else:
audio_path = file.name
# Transcribe audio
transcription = transcribe_audio(audio_path)
print("Transcribed Text: ", transcription)
# Perform SOAP analysis
soap_note = soap_analysis(transcription)
print("SOAP Notes: ", soap_note)
# Clean up temporary files
if file.name.endswith(".mp4"):
os.remove(temp_mp3_path)
return soap_note
# Process text function for text input to SOAP
def process_text(text, user_prompt):
soap_note = soap_analysis(text)
print(soap_note)
return soap_note
# Gradio interface
def launch_gradio():
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("# Enhanced Video to SOAP Note Generator")
with gr.Tab("Audio/Video File to SOAP"):
gr.Interface(
fn=process_file,
inputs=[gr.File(label="Upload Audio/Video File"), gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6)],
outputs=[
gr.Textbox(label="SOAP Note"),
],
)
with gr.Tab("Text Input to SOAP"):
gr.Interface(
fn=process_text,
inputs=[gr.Textbox(label="Enter Text", placeholder="Enter medical notes...", lines=6), gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6)],
outputs=[
gr.Textbox(label="SOAP Note"),
],
)
demo.launch(share=True, debug=True)
# Run the Gradio app
if __name__ == "__main__":
launch_gradio()
# import os
# import tempfile
# from subprocess import Popen, PIPE
# import torch
# import gradio as gr
# from pydub import AudioSegment
# from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
# from transformers.pipelines.audio_utils import ffmpeg_read
# from sentence_transformers import SentenceTransformer, util
# import spacy
# import spacy.cli
# spacy.cli.download("en_core_web_sm")
# # Constants
# MODEL_NAME = "openai/whisper-large-v3-turbo"
# BATCH_SIZE = 8
# FILE_LIMIT_MB = 1000
# device = 0 if torch.cuda.is_available() else "cpu"
# # Whisper pipeline
# whisper_pipeline = pipeline(
# task="automatic-speech-recognition",
# model=MODEL_NAME,
# chunk_length_s=30,
# device=device,
# )
# # NLP model and other helpers
# nlp = spacy.load("en_core_web_sm")
# embedder = SentenceTransformer("all-MiniLM-L6-v2")
# # Summarization model
# summarizer_model_name = "Mahalingam/DistilBart-Med-Summary"
# tokenizer = AutoTokenizer.from_pretrained(summarizer_model_name)
# summarizer_model = AutoModelForSeq2SeqLM.from_pretrained(summarizer_model_name)
# summarizer = pipeline("summarization", model=summarizer_model, tokenizer=tokenizer)
# # SOAP prompts and embeddings
# soap_prompts = {
# "subjective": "Personal reports, symptoms described by patients, or personal health concerns. Details reflecting individual symptoms or health descriptions.",
# "objective": "Observable facts, clinical findings, professional observations, specific medical specialties, and diagnoses.",
# "assessment": "Clinical assessments, expertise-based opinions on conditions, and significance of medical interventions. Focused on medical evaluations or patient condition summaries.",
# "plan": "Future steps, recommendations for treatment, follow-up instructions, and healthcare management plans."
# }
# soap_embeddings = {section: embedder.encode(prompt, convert_to_tensor=True) for section, prompt in soap_prompts.items()}
# # Convert MP4 to MP3
# def convert_mp4_to_mp3(mp4_path, mp3_path):
# try:
# audio = AudioSegment.from_file(mp4_path, format="mp4")
# audio.export(mp3_path, format="mp3")
# except Exception as e:
# raise RuntimeError(f"Error converting MP4 to MP3: {e}")
# # Transcribe audio
# def transcribe_audio(audio_path):
# try:
# if not os.path.exists(audio_path):
# raise FileNotFoundError(f"Audio file not found: {audio_path}")
# # Read the audio file and prepare inputs for Whisper
# inputs = ffmpeg_read(audio_path, whisper_pipeline.feature_extractor.sampling_rate)
# inputs = {"array": inputs, "sampling_rate": whisper_pipeline.feature_extractor.sampling_rate}
# # Perform transcription using Whisper
# result = whisper_pipeline(inputs, batch_size=BATCH_SIZE, return_timestamps=False)
# return result["text"]
# except Exception as e:
# return f"Error during transcription: {e}"
# # Classify the sentence to the correct SOAP section
# def classify_sentence(sentence):
# similarities = {section: util.pytorch_cos_sim(embedder.encode(sentence), soap_embeddings[section]) for section in soap_prompts.keys()}
# return max(similarities, key=similarities.get)
# # Summarize the section if it's too long
# def summarize_section(section_text):
# if len(section_text.split()) < 50:
# return section_text
# target_length = int(len(section_text.split()) * 0.50)
# inputs = tokenizer.encode(section_text, return_tensors="pt", truncation=True, max_length=1024)
# summary_ids = summarizer_model.generate(
# inputs,
# max_length=target_length,
# min_length=int(target_length * 0.45),
# length_penalty=1.0,
# num_beams=4
# )
# return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
# # Analyze the SOAP content and divide into sections
# def soap_analysis(text):
# doc = nlp(text)
# soap_note = {section: "" for section in soap_prompts.keys()}
# for sentence in doc.sents:
# section = classify_sentence(sentence.text)
# soap_note[section] += sentence.text + " "
# # Summarize each section of the SOAP note
# for section in soap_note:
# soap_note[section] = summarize_section(soap_note[section].strip())
# return format_soap_output(soap_note)
# # Format the SOAP note output
# def format_soap_output(soap_note):
# return (
# f"Subjective:\n{soap_note['subjective']}\n\n"
# f"Objective:\n{soap_note['objective']}\n\n"
# f"Assessment:\n{soap_note['assessment']}\n\n"
# f"Plan:\n{soap_note['plan']}\n"
# )
# # Process file function for audio/video to SOAP
# def process_file(file, user_prompt):
# # Determine file type and convert if necessary
# if file.name.endswith(".mp4"):
# temp_mp3_path = tempfile.NamedTemporaryFile(suffix=".mp3", delete=False).name
# try:
# convert_mp4_to_mp3(file.name, temp_mp3_path)
# audio_path = temp_mp3_path
# except Exception as e:
# return f"Error during MP4 to MP3 conversion: {e}", "", ""
# else:
# audio_path = file.name
# # Transcribe audio
# transcription = transcribe_audio(audio_path)
# print("Transcribed Text: ", transcription)
# # Perform SOAP analysis
# soap_note = soap_analysis(transcription)
# print("SOAP Notes: ", soap_note)
# # # Generate template and JSON using LLaMA
# # template_output = llama_query(user_prompt, soap_note)
# # print("Template: ", template_output)
# # json_output = llama_convert_to_json(template_output)
# # Clean up temporary files
# if file.name.endswith(".mp4"):
# os.remove(temp_mp3_path)
# return soap_note#, template_output, json_output
# # Process text function for text input to SOAP
# def process_text(text, user_prompt):
# soap_note = soap_analysis(text)
# print(soap_note)
# # template_output = llama_query(user_prompt, soap_note)
# # print(template_output)
# # json_output = llama_convert_to_json(template_output)
# return soap_note#, template_output, json_output
# # # Llama query function
# # def llama_query(user_prompt, soap_note, model="llama3.2"):
# # combined_prompt = f"User Instructions:\n{user_prompt}\n\nContext:\n{soap_note}"
# # try:
# # process = Popen(['ollama', 'run', model], stdin=PIPE, stdout=PIPE, stderr=PIPE, text=True, encoding='utf-8')
# # stdout, stderr = process.communicate(input=combined_prompt)
# # if process.returncode != 0:
# # return f"Error: {stderr.strip()}"
# # return stdout.strip()
# # except Exception as e:
# # return f"Unexpected error: {str(e)}"
# # # Convert the response to JSON format
# # def llama_convert_to_json(template_output, model="llama3.2"):
# # json_prompt = f"Convert the following template into a structured JSON format:\n\n{template_output}"
# # try:
# # process = Popen(['ollama', 'run', model], stdin=PIPE, stdout=PIPE, stderr=PIPE, text=True, encoding='utf-8')
# # stdout, stderr = process.communicate(input=json_prompt)
# # if process.returncode != 0:
# # return f"Error: {stderr.strip()}"
# # return stdout.strip() # Assuming the model outputs a valid JSON string
# # except Exception as e:
# # return f"Unexpected error: {str(e)}"
# # Gradio interface
# def launch_gradio():
# with gr.Blocks(theme=gr.themes.Default()) as demo:
# gr.Markdown("# Enhanced Video to SOAP Note Generator")
# with gr.Tab("Audio/Video File to SOAP"):
# gr.Interface(
# fn=process_file,
# inputs=[gr.File(label="Upload Audio/Video File"), gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6)],
# outputs=[
# gr.Textbox(label="SOAP Note"),
# # gr.Textbox(label="Generated Template from LLaMA"),
# # gr.Textbox(label="JSON Output")
# ],
# )
# with gr.Tab("Text Input to SOAP"):
# gr.Interface(
# fn=process_text,
# inputs=[gr.Textbox(label="Enter Text", placeholder="Enter medical notes...", lines=6), gr.Textbox(label="Enter Prompt for Template", placeholder="Enter a detailed prompt...", lines=6)],
# outputs=[
# gr.Textbox(label="SOAP Note"),
# # gr.Textbox(label="Generated Template from LLaMA"),
# # gr.Textbox(label="JSON Output")
# ],
# )
# demo.launch(share=True, debug=True)
# # Run the Gradio app
# if __name__ == "__main__":
# launch_gradio()