apps / app.py
karthickg12's picture
Update app.py
bb48749 verified
raw
history blame
880 Bytes
# import streamlit as st
# from transformers import pipeline
# summarizer = pipeline("summarization")
# # pipe=pipeline("sentiment-analysis")
# # col1, col2 = st.columns(2)
# # with col1:
# # x=st.button("Sentiment Analysis")
# # with col2:
# # y=st.button("Text Summarization")
# # if x:
# # t=st.text_input("Enter the Text")
# # st.write(pipe(t))
# # if y:
# t1=st.text_input("Enter the Text for Summarization")
# st.write(summarizer(t1))
#from transformers import AutoTokenizer, AutoModel
import streamlit as st
#tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1")
#model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1")
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("feature-extraction")
t=st.text_input("Enter the Text")
st.write(pipe(t))