Spaces:
Running
Running
# import streamlit as st | |
# from transformers import pipeline | |
# summarizer = pipeline("summarization") | |
# # pipe=pipeline("sentiment-analysis") | |
# # col1, col2 = st.columns(2) | |
# # with col1: | |
# # x=st.button("Sentiment Analysis") | |
# # with col2: | |
# # y=st.button("Text Summarization") | |
# # if x: | |
# # t=st.text_input("Enter the Text") | |
# # st.write(pipe(t)) | |
# # if y: | |
# t1=st.text_input("Enter the Text for Summarization") | |
# st.write(summarizer(t1)) | |
#from transformers import AutoTokenizer, AutoModel | |
import streamlit as st | |
#tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1") | |
#model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1") | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
pipe = pipeline("feature-extraction") | |
t=st.text_input("Enter the Text") | |
st.write(pipe(t)) |