Spaces:
Runtime error
Runtime error
import torch | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer | |
from peft import LoraConfig, get_peft_model | |
from datasets import load_dataset | |
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME === | |
MODEL_NAME = "mistralai/Mistral-7B-v0.1" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
# === 2️⃣ LoRA AYARLARI === | |
lora_config = LoraConfig( | |
r=8, | |
lora_alpha=32, | |
lora_dropout=0.1, | |
bias="none", | |
target_modules=["q_proj", "v_proj"], | |
) | |
# === 3️⃣ VERİ SETİ === | |
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", split="train", streaming=True, trust_remote_code=True) | |
dataset = dataset.shuffle(seed=42).take(10000) | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], truncation=True, max_length=512) | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# === 4️⃣ EĞİTİM AYARLARI === | |
# === 4️⃣ EĞİTİM AYARLARI === | |
training_args = TrainingArguments( | |
output_dir="./mistral_lora", | |
per_device_train_batch_size=1, | |
gradient_accumulation_steps=16, | |
learning_rate=5e-4, | |
num_train_epochs=1, | |
save_steps=500, | |
save_total_limit=2, | |
logging_dir="./logs", | |
logging_steps=10, | |
optim="adamw_torch", | |
no_cuda=True, # 🔥 ÇÖZÜM: Ana süreçte GPU'yu başlatmayı engelle | |
) | |
# === 5️⃣ GPU BAŞLATMA VE EĞİTİM === | |
def train_model(): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Modeli burada yükle | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32).to(device) | |
model = get_peft_model(model, lora_config) | |
# TrainingArguments burada tanımlandı! | |
training_args = TrainingArguments( | |
output_dir="./mistral_lora", | |
per_device_train_batch_size=1, | |
gradient_accumulation_steps=16, | |
learning_rate=5e-4, | |
num_train_epochs=1, | |
save_steps=500, | |
save_total_limit=2, | |
logging_dir="./logs", | |
logging_steps=10, | |
optim="adamw_torch", | |
) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=tokenized_datasets, | |
) | |
trainer.train() | |
return "✅ Model Eğitimi Tamamlandı!" | |
# === 6️⃣ BAŞLATMA === | |
if __name__ == "__main__": | |
train_model() # Eğitimi başlat | |