Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,78 +2,69 @@ import torch
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
3 |
from peft import LoraConfig, get_peft_model
|
4 |
from datasets import load_dataset
|
5 |
-
import spaces
|
6 |
import gradio as gr
|
|
|
|
|
7 |
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME ===
|
8 |
-
MODEL_NAME = "mistralai/Mistral-7B-v0.1"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
10 |
|
11 |
# === 2️⃣ CPU OPTİMİZASYONU ===
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
zero = torch.Tensor([0]).cuda()
|
17 |
-
print(zero.device) # <-- 'cpu' 🤔
|
18 |
-
|
19 |
-
|
20 |
-
print(zero.device) # <-- 'cuda:0' 🤗
|
21 |
-
|
22 |
-
|
23 |
-
print(zero.device) # <-- 'cuda:0' 🤗
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
torch_dtype = torch.float32 # float32 seçtik çünkü CPU'da bf16 genelde yok
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype)
|
29 |
|
30 |
# === 3️⃣ LoRA AYARLARI ===
|
31 |
lora_config = LoraConfig(
|
32 |
-
r=8,
|
33 |
-
lora_alpha=32,
|
34 |
-
lora_dropout=0.1,
|
35 |
bias="none",
|
36 |
-
target_modules=["q_proj", "v_proj"],
|
37 |
)
|
38 |
model = get_peft_model(model, lora_config)
|
39 |
|
40 |
-
# === 4️⃣ VERİ SETİ ===
|
41 |
-
|
42 |
-
train_data = dataset["train"].shuffle(seed=42).select(range(10000)) # Küçük subset
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def tokenize_function(examples):
|
46 |
return tokenizer(examples["text"], truncation=True, max_length=512)
|
47 |
|
48 |
-
tokenized_datasets =
|
49 |
|
50 |
# === 6️⃣ EĞİTİM AYARLARI ===
|
51 |
training_args = TrainingArguments(
|
52 |
output_dir="./mistral_lora_cpu",
|
53 |
-
per_device_train_batch_size=1,
|
54 |
-
gradient_accumulation_steps=16,
|
55 |
-
learning_rate=5e-4,
|
56 |
-
num_train_epochs=1,
|
57 |
save_steps=500,
|
58 |
save_total_limit=2,
|
59 |
logging_dir="./logs",
|
60 |
logging_steps=10,
|
61 |
-
optim="adamw_torch",
|
|
|
62 |
)
|
63 |
|
64 |
# === 7️⃣ MODEL EĞİTİMİ ===
|
65 |
-
@spaces.GPU
|
66 |
def trainf():
|
67 |
-
|
68 |
-
v= Trainer(
|
69 |
-
|
70 |
model=model,
|
71 |
-
|
72 |
args=training_args,
|
73 |
-
|
74 |
train_dataset=tokenized_datasets,
|
75 |
-
|
76 |
)
|
77 |
-
|
78 |
|
79 |
-
trainf()
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
3 |
from peft import LoraConfig, get_peft_model
|
4 |
from datasets import load_dataset
|
|
|
5 |
import gradio as gr
|
6 |
+
import os
|
7 |
+
|
8 |
# === 1️⃣ MODEL VE TOKENIZER YÜKLEME ===
|
9 |
+
MODEL_NAME = "mistralai/Mistral-7B-v0.1"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
11 |
|
12 |
# === 2️⃣ CPU OPTİMİZASYONU ===
|
13 |
+
torch_dtype = torch.float32 # CPU için float32 en iyisi
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch_dtype).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# === 3️⃣ LoRA AYARLARI ===
|
18 |
lora_config = LoraConfig(
|
19 |
+
r=8,
|
20 |
+
lora_alpha=32,
|
21 |
+
lora_dropout=0.1,
|
22 |
bias="none",
|
23 |
+
target_modules=["q_proj", "v_proj"],
|
24 |
)
|
25 |
model = get_peft_model(model, lora_config)
|
26 |
|
27 |
+
# === 4️⃣ VERİ SETİ (OPTİMİZE) ===
|
28 |
+
DATASET_PATH = "oscar_tr.parquet"
|
|
|
29 |
|
30 |
+
if os.path.exists(DATASET_PATH):
|
31 |
+
print("📂 Kaydedilmiş veri seti bulundu, yükleniyor...")
|
32 |
+
from datasets import Dataset
|
33 |
+
dataset = Dataset.from_parquet(DATASET_PATH)
|
34 |
+
else:
|
35 |
+
print("🌍 Veri seti indiriliyor ve kaydediliyor...")
|
36 |
+
dataset = load_dataset("oscar", "unshuffled_deduplicated_tr", split="train")
|
37 |
+
dataset = dataset.shuffle(seed=42).select(range(10000)) # 10K veri ile sınırladık
|
38 |
+
dataset.to_parquet(DATASET_PATH) # İlk çalışmada veriyi kaydediyoruz
|
39 |
+
|
40 |
+
# === 5️⃣ TOKENLEŞTİRME (OPTİMİZE) ===
|
41 |
def tokenize_function(examples):
|
42 |
return tokenizer(examples["text"], truncation=True, max_length=512)
|
43 |
|
44 |
+
tokenized_datasets = dataset.map(tokenize_function, batched=True, num_proc=4) # 🔥 Paralel işlem
|
45 |
|
46 |
# === 6️⃣ EĞİTİM AYARLARI ===
|
47 |
training_args = TrainingArguments(
|
48 |
output_dir="./mistral_lora_cpu",
|
49 |
+
per_device_train_batch_size=1,
|
50 |
+
gradient_accumulation_steps=16,
|
51 |
+
learning_rate=5e-4,
|
52 |
+
num_train_epochs=1,
|
53 |
save_steps=500,
|
54 |
save_total_limit=2,
|
55 |
logging_dir="./logs",
|
56 |
logging_steps=10,
|
57 |
+
optim="adamw_torch",
|
58 |
+
dataloader_pin_memory=True, # 🔥 GPU bellek optimizasyonu
|
59 |
)
|
60 |
|
61 |
# === 7️⃣ MODEL EĞİTİMİ ===
|
|
|
62 |
def trainf():
|
63 |
+
trainer = Trainer(
|
|
|
|
|
64 |
model=model,
|
|
|
65 |
args=training_args,
|
|
|
66 |
train_dataset=tokenized_datasets,
|
|
|
67 |
)
|
68 |
+
trainer.train()
|
69 |
|
70 |
+
trainf()
|