Spaces:
Running
Running
File size: 6,997 Bytes
94f6129 f87e858 94f6129 e3eafcd 94f6129 e3eafcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset, random_split
from torch.optim.lr_scheduler import ReduceLROnPlateau
import cv2
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class BeautyScore(nn.Module):
def __init__(self, first_neuron):
super(BeautyScore, self).__init__()
self.first_out_channels = first_neuron
self.features = nn.Sequential(
# First Convolutional Block
nn.Conv2d(in_channels=3, out_channels=self.first_out_channels, kernel_size=3, padding=1), # dimension [batch_size, out_channel, 128, `128`] -> padding = 1
nn.ReLU(),
nn.BatchNorm2d(self.first_out_channels),
nn.MaxPool2d(2), # dimension [batch_size, out_channel, 64, 64]
# Second Convolutional Block
nn.Conv2d(in_channels=self.first_out_channels, out_channels=self.first_out_channels*2, kernel_size=3, padding=1), # dimension [batch_size, out_channel, 32, 32]
nn.ReLU(),
nn.BatchNorm2d(self.first_out_channels*2),
nn.MaxPool2d(2), # dimension [batch_size, out_channel*2, 32, 32]
# Third Convolutional Block
nn.Conv2d(in_channels=self.first_out_channels*2, out_channels=self.first_out_channels*4, kernel_size=3, padding=1), # dimension [batch_size, out_channel, 16, 16]
nn.ReLU(),
nn.BatchNorm2d(self.first_out_channels*4),
nn.MaxPool2d(2), # dimension [batch_size, out_channel*4, 16, 16]
)
# Calculate size of flattened features after the convolutional layers
self.flatten_size = self.first_out_channels * 4 * (128 // (2**3)) * (128 // (2**3)) # out_channel * (128 // 2^amount_of_max_pool) * (128 // 2^amount_of_max_pool)
self.classifier = nn.Sequential(
nn.Dropout(0.3),
nn.Linear(self.flatten_size, 256), # dimension [batch_size, 256]
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, 128), # dimension [batch_size, 128]
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(128, 1), # dimension [batch_size, 1]
nn.Sigmoid() # To get value from 0 to 1
)
def forward(self, x):
x = self.features(x)
x = x.reshape(x.size(0), -1) # Flatten the tensor
x = self.classifier(x)
return x
class Trainer:
def __init__(self, train_loader = None, val_loader = None):
self.model = BeautyScore(first_neuron=256)
self.train_loader = train_loader
self.val_loader = val_loader
self.criterion = nn.MSELoss()
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=0.001)
self.scheduler = ReduceLROnPlateau(self.optimizer, mode='min', factor=0.1, patience=5, verbose=True)
self.num_epochs = 20
def load_data(self):
data_path = '/home/reynaldy/.cache/kagglehub/datasets/pranavchandane/scut-fbp5500-v2-facial-beauty-scores/versions/2/scut_fbp5500-cmprsd.npz'
data = np.load(data_path)
data['X'].shape, data['y'].shape
features_numpy = data['X'].astype(np.float32)
features_numpy = np.array([cv2.resize(img, (128, 128)) for img in features_numpy]) # Resize the images to 256x256
features = torch.tensor(features_numpy, dtype=torch.float32).to(device)
features = features.permute(0, 3, 1, 2).to(device)
label_numpy = data['y'].astype(np.float32)
labels = torch.tensor(label_numpy, dtype=torch.float32).to(device)
tensor_min = labels.min()
tensor_max = labels.max()
labels = (labels - tensor_min) / (tensor_max - tensor_min)
print("Finish loading data")
train_size = int(0.8 * len(features))
test_size = len(features) - train_size
train_dataset, test_dataset = random_split(TensorDataset(features, labels), [train_size, test_size])
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
return train_loader, val_loader
def train(self):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(device)
self.model.train()
running_loss = 0.0
train_loader, _= self.load_data()
for batch_idx, (inputs, labels) in enumerate(train_loader):
inputs, labels = inputs.to(device), labels.to(device).float()
self.optimizer.zero_grad()
outputs = self.model(inputs)
loss = self.criterion(outputs.squeeze(), labels)
loss.backward()
self.optimizer.step()
running_loss += loss.item()
if (batch_idx + 1) % 20 == 0:
print(f"Batch {batch_idx + 1}/{len(train_loader)} Loss: {loss.item()}")
epoch_loss = running_loss / len(train_loader)
if self.scheduler:
self.scheduler.step(epoch_loss)
print(f"Training Loss: {epoch_loss:.4f}")
return epoch_loss
def validate(self):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.to(device)
self.model.eval()
running_loss = 0.0
_, val_loader = self.load_data()
with torch.no_grad():
for batch_idx, (inputs, labels) in enumerate(val_loader):
inputs, labels = inputs.to(device), labels.to(device).float()
outputs = self.model(inputs)
loss = self.criterion(outputs.squeeze(), labels)
running_loss += loss.item()
epoch_loss = running_loss / len(val_loader)
print(f"Validation Loss: {epoch_loss:.4f}")
return epoch_loss
def image_to_tensor(self, image_path):
image = cv2.imread(image_path)
image = cv2.resize(image, (128, 128))
image = torch.tensor(image, dtype=torch.float32).to(device)
image = image.permute(2, 0, 1).unsqueeze(0)
return image
def predict(self, inputs):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model.load_state_dict(torch.load('best_model.pth', weights_only=True, map_location=torch.device('cpu')))
self.model.to(device)
self.model.eval()
inputs = inputs.to(device)
with torch.no_grad():
outputs = self.model(inputs)
return outputs
# if __name__ == "__main__":
# trainer = Trainer()
# # Test the model
# image_path = '6082308423334085331.jpg'
# image_tensor = trainer.image_to_tensor(image_path)
# prediction = trainer.predict(image_tensor)
# print(f"Predicted Beauty Score: {prediction.item() * 100}") |