File size: 6,997 Bytes
94f6129
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f87e858
94f6129
 
 
 
 
 
 
e3eafcd
 
94f6129
e3eafcd
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset, random_split
from torch.optim.lr_scheduler import ReduceLROnPlateau
import cv2

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class BeautyScore(nn.Module):
    def __init__(self, first_neuron):
        super(BeautyScore, self).__init__()

        self.first_out_channels = first_neuron
        
        self.features = nn.Sequential(
            # First Convolutional Block
            nn.Conv2d(in_channels=3, out_channels=self.first_out_channels, kernel_size=3, padding=1),  # dimension [batch_size, out_channel, 128, `128`] -> padding = 1
            nn.ReLU(),
            nn.BatchNorm2d(self.first_out_channels),
            nn.MaxPool2d(2), # dimension [batch_size, out_channel, 64, 64]
            
            # Second Convolutional Block
            nn.Conv2d(in_channels=self.first_out_channels, out_channels=self.first_out_channels*2, kernel_size=3, padding=1), # dimension [batch_size, out_channel, 32, 32]
            nn.ReLU(),
            nn.BatchNorm2d(self.first_out_channels*2),
            nn.MaxPool2d(2), # dimension [batch_size, out_channel*2, 32, 32]
            
            # Third Convolutional Block
            nn.Conv2d(in_channels=self.first_out_channels*2, out_channels=self.first_out_channels*4, kernel_size=3, padding=1), # dimension [batch_size, out_channel, 16, 16]
            nn.ReLU(),
            nn.BatchNorm2d(self.first_out_channels*4),
            nn.MaxPool2d(2), # dimension [batch_size, out_channel*4, 16, 16]
            
        )
        
        # Calculate size of flattened features after the convolutional layers
        self.flatten_size = self.first_out_channels * 4 * (128 // (2**3)) * (128 // (2**3)) # out_channel * (128 // 2^amount_of_max_pool) * (128 // 2^amount_of_max_pool)
        
        self.classifier = nn.Sequential(
            nn.Dropout(0.3),
            nn.Linear(self.flatten_size, 256), # dimension [batch_size, 256]
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(256, 128), # dimension [batch_size, 128]
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(128, 1), # dimension [batch_size, 1]
            nn.Sigmoid() # To get value from 0 to 1
        )
    
    def forward(self, x):
        x = self.features(x)
        x = x.reshape(x.size(0), -1)  # Flatten the tensor
        x = self.classifier(x)
        return x
    
class Trainer:
    def __init__(self, train_loader = None, val_loader = None):
        self.model = BeautyScore(first_neuron=256)
        self.train_loader = train_loader
        self.val_loader = val_loader
        self.criterion = nn.MSELoss()
        self.optimizer = torch.optim.SGD(self.model.parameters(), lr=0.001)
        self.scheduler = ReduceLROnPlateau(self.optimizer, mode='min', factor=0.1, patience=5, verbose=True)
        self.num_epochs = 20

    def load_data(self):
        data_path = '/home/reynaldy/.cache/kagglehub/datasets/pranavchandane/scut-fbp5500-v2-facial-beauty-scores/versions/2/scut_fbp5500-cmprsd.npz'

        data = np.load(data_path)
        data['X'].shape, data['y'].shape

        features_numpy = data['X'].astype(np.float32) 
        features_numpy = np.array([cv2.resize(img, (128, 128)) for img in features_numpy]) # Resize the images to 256x256
        features = torch.tensor(features_numpy, dtype=torch.float32).to(device)
        features = features.permute(0, 3, 1, 2).to(device)

        label_numpy = data['y'].astype(np.float32)
        labels = torch.tensor(label_numpy, dtype=torch.float32).to(device)
        tensor_min = labels.min()
        tensor_max = labels.max()

        labels = (labels - tensor_min) / (tensor_max - tensor_min)
        print("Finish loading data")

        train_size = int(0.8 * len(features))
        test_size = len(features) - train_size

        train_dataset, test_dataset = random_split(TensorDataset(features, labels), [train_size, test_size])
        train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
        val_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
        return train_loader, val_loader
        
    def train(self):
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.to(device)
        self.model.train()
        running_loss = 0.0
        train_loader, _= self.load_data()
        
        for batch_idx, (inputs, labels) in enumerate(train_loader):
            inputs, labels = inputs.to(device), labels.to(device).float()
            
            self.optimizer.zero_grad()
            outputs = self.model(inputs)
            loss = self.criterion(outputs.squeeze(), labels)
            loss.backward()
            self.optimizer.step()
            
            running_loss += loss.item()

            if (batch_idx + 1) % 20 == 0:
                print(f"Batch {batch_idx + 1}/{len(train_loader)} Loss: {loss.item()}")
        
        epoch_loss = running_loss / len(train_loader)
        if self.scheduler:
            self.scheduler.step(epoch_loss)

        print(f"Training Loss: {epoch_loss:.4f}")
        return epoch_loss
    
    def validate(self):
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.to(device)
        self.model.eval()
        running_loss = 0.0
        _, val_loader = self.load_data()
        
        with torch.no_grad():
            for batch_idx, (inputs, labels) in enumerate(val_loader):
                inputs, labels = inputs.to(device), labels.to(device).float()
                outputs = self.model(inputs)
                loss = self.criterion(outputs.squeeze(), labels)
                
                running_loss += loss.item()
                
        epoch_loss = running_loss / len(val_loader)
        print(f"Validation Loss: {epoch_loss:.4f}")
        return epoch_loss
    
    def image_to_tensor(self, image_path):
        image = cv2.imread(image_path)
        image = cv2.resize(image, (128, 128))
        image = torch.tensor(image, dtype=torch.float32).to(device)
        image = image.permute(2, 0, 1).unsqueeze(0)
        return image
    
    def predict(self, inputs):
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model.load_state_dict(torch.load('best_model.pth', weights_only=True, map_location=torch.device('cpu')))
        self.model.to(device)
        self.model.eval()
        inputs = inputs.to(device)
        with torch.no_grad():
            outputs = self.model(inputs)
        return outputs

# if __name__ == "__main__":
#     trainer = Trainer()
    
#     # Test the model
#     image_path = '6082308423334085331.jpg'
#     image_tensor = trainer.image_to_tensor(image_path)
#     prediction = trainer.predict(image_tensor)
#     print(f"Predicted Beauty Score: {prediction.item() * 100}")