File size: 2,130 Bytes
65b683f
 
 
 
 
 
 
 
e12a53c
 
65b683f
 
 
 
 
da2d88d
65b683f
 
 
da2d88d
65b683f
5c41bd3
 
 
65b683f
 
 
206be88
65b683f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import streamlit as st

import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
import pandas as pd

st.title("Streamlit + Transformers")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

from transformers import MarianMTModel, MarianTokenizer
model_name = 'Helsinki-NLP/opus-mt-ROMANCE-en'

@st.experimental_singleton
def get_tokenizer(model_name):
    return MarianTokenizer.from_pretrained(model_name)

@st.experimental_singleton
def get_model(model_name):
    model = MarianMTModel.from_pretrained(model_name).to(device)
    print(f"Loaded model, {model.num_parameters():,d} parameters.")
    return model

tokenizer = get_tokenizer(model_name)
model = get_model(model_name)


input_text = st.text_input("Enter text to translate", "Hola, mi nombre es Juan")
input_text = input_text.strip()
if not input_text:
    st.stop()

output_so_far = st.text_input("Enter text translated so far", "Hello, my")

input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)

# tokenize the output so far
with tokenizer.as_target_tokenizer():
    output_tokens = tokenizer.tokenize(output_so_far)
    decoder_input_ids = tokenizer.convert_tokens_to_ids(output_tokens)

# Add the start token
decoder_input_ids = [model.config.decoder_start_token_id] + decoder_input_ids

with torch.no_grad():
    model_output = model(
        input_ids = input_ids,
        decoder_input_ids = torch.tensor([decoder_input_ids]).to(device))


last_token_logits = model_output.logits[0, -1].cpu()
assert len(last_token_logits.shape) == 1
most_likely_tokens = last_token_logits.topk(k=5)

probs = last_token_logits.softmax(dim=-1)
probs_for_likely_tokens = probs[most_likely_tokens.indices]

with tokenizer.as_target_tokenizer():
    probs_table = pd.DataFrame({
        'token': [tokenizer.decode(token_id) for token_id in most_likely_tokens.indices],
        'id': most_likely_tokens.indices,
        'probability': probs_for_likely_tokens,
        'logprob': probs_for_likely_tokens.log(),
        'cumulative probability': probs_for_likely_tokens.cumsum(0)
    })


st.write(probs_table)