Spaces:
Sleeping
Sleeping
File size: 2,154 Bytes
65b683f e12a53c 65b683f da2d88d 65b683f da2d88d 65b683f 206be88 65b683f e12a53c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import streamlit as st
import torch
import torch.nn as nn
import torch.nn.functional as F
import transformers
import pandas as pd
st.title("Streamlit + Transformers")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
from transformers import MarianMTModel, MarianTokenizer
model_name = 'Helsinki-NLP/opus-mt-ROMANCE-en'
@st.experimental_singleton
def get_tokenizer(model_name):
return MarianTokenizer.from_pretrained(model_name)
@st.experimental_singleton
def get_model(model_name):
return MarianMTModel.from_pretrained(model_name).to(device)
tokenizer = get_tokenizer(model_name)
model = get_model(model_name)
print(f"The model has {model.num_parameters():,d} parameters.")
input_text = st.text_input("Enter text to translate", "Hola, mi nombre es Juan")
input_text = input_text.strip()
if not input_text:
st.stop()
output_so_far = st.text_input("Enter text translated so far", "Hello, my")
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
# tokenize the output so far
with tokenizer.as_target_tokenizer():
output_tokens = tokenizer.tokenize(output_so_far)
decoder_input_ids = tokenizer.convert_tokens_to_ids(output_tokens)
# Add the start token
decoder_input_ids = [model.config.decoder_start_token_id] + decoder_input_ids
with torch.no_grad():
model_output = model(
input_ids = input_ids,
decoder_input_ids = torch.tensor([decoder_input_ids]).to(device))
last_token_logits = model_output.logits[0, -1].cpu()
assert len(last_token_logits.shape) == 1
most_likely_tokens = last_token_logits.topk(k=5)
probs = last_token_logits.softmax(dim=-1)
probs_for_likely_tokens = probs[most_likely_tokens.indices]
with tokenizer.as_target_tokenizer():
probs_table = pd.DataFrame({
'token': [tokenizer.decode(token_id) for token_id in most_likely_tokens.indices],
'id': most_likely_tokens.indices,
'probability': probs_for_likely_tokens,
'logprob': probs_for_likely_tokens.log(),
'cumulative probability': probs_for_likely_tokens.cumsum(0)
})
st.write(probs_table)
st.write(model.config.decoder_start_token_id)
|