kedimestan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,84 +1,99 @@
|
|
1 |
-
from fastapi import FastAPI, UploadFile, HTTPException
|
2 |
from fastapi.responses import JSONResponse
|
3 |
-
import uvicorn
|
4 |
import torch
|
5 |
import torch.nn as nn
|
6 |
-
from torchvision.models import vgg19
|
7 |
from torchvision import transforms
|
|
|
8 |
from PIL import Image
|
9 |
import io
|
|
|
10 |
|
11 |
-
# FastAPI
|
12 |
app = FastAPI()
|
13 |
|
14 |
-
#
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
def load_model():
|
18 |
-
|
|
|
|
|
|
|
19 |
model.classifier = nn.Sequential(
|
20 |
-
nn.Linear(25088, 12544),
|
21 |
nn.ReLU(),
|
22 |
nn.Dropout(0.5),
|
23 |
-
nn.Linear(12544, 6272),
|
24 |
nn.ReLU(),
|
25 |
nn.Dropout(0.5),
|
26 |
-
nn.Linear(6272, 3136),
|
27 |
nn.ReLU(),
|
28 |
nn.Dropout(0.4),
|
29 |
-
nn.Linear(3136, 1568),
|
30 |
nn.ReLU(),
|
31 |
nn.Dropout(0.4),
|
32 |
-
nn.Linear(1568, 784),
|
33 |
nn.ReLU(),
|
34 |
nn.Dropout(0.3),
|
35 |
-
nn.Linear(784, 392),
|
36 |
nn.ReLU(),
|
37 |
nn.Dropout(0.3),
|
38 |
-
nn.Linear(392, 196),
|
39 |
nn.ReLU(),
|
40 |
nn.Dropout(0.2),
|
41 |
-
nn.Linear(196, 98),
|
42 |
nn.ReLU(),
|
43 |
nn.Dropout(0.2),
|
44 |
-
nn.Linear(98, 49),
|
45 |
nn.ReLU(),
|
46 |
nn.Dropout(0.1),
|
47 |
-
nn.Linear(49, 1),
|
48 |
nn.Sigmoid()
|
49 |
)
|
|
|
|
|
|
|
50 |
model = model.to(device)
|
51 |
-
model.load_state_dict(torch.load("best_model.pth", map_location=device))
|
52 |
model.eval()
|
53 |
return model
|
54 |
|
55 |
model = load_model()
|
56 |
|
57 |
-
#
|
58 |
transform = transforms.Compose([
|
59 |
transforms.Resize((224, 224)),
|
60 |
transforms.ToTensor(),
|
61 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
62 |
])
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
70 |
|
71 |
-
# Ana
|
72 |
@app.post("/predict")
|
73 |
-
async def
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
2 |
from fastapi.responses import JSONResponse
|
|
|
3 |
import torch
|
4 |
import torch.nn as nn
|
|
|
5 |
from torchvision import transforms
|
6 |
+
from torchvision.models import vgg19
|
7 |
from PIL import Image
|
8 |
import io
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
|
11 |
+
# FastAPI uygulamasını başlat
|
12 |
app = FastAPI()
|
13 |
|
14 |
+
# Cihaz ayarı
|
15 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
|
17 |
+
# Hugging Face modelini yükleme bilgileri
|
18 |
+
REPO_ID = "kedimestan/retinoblastomaDetectionVGG19"
|
19 |
+
MODEL_FILE = "pytorch_model.bin"
|
20 |
+
|
21 |
+
# Modeli indir ve yükle
|
22 |
def load_model():
|
23 |
+
model_path = hf_hub_download(repo_id=REPO_ID, filename=MODEL_FILE)
|
24 |
+
|
25 |
+
# Model yapısını yeniden tanımla (VGG19 + özel sınıflandırıcı)
|
26 |
+
model = vgg19(pretrained=False)
|
27 |
model.classifier = nn.Sequential(
|
28 |
+
nn.Linear(25088, 12544),
|
29 |
nn.ReLU(),
|
30 |
nn.Dropout(0.5),
|
31 |
+
nn.Linear(12544, 6272),
|
32 |
nn.ReLU(),
|
33 |
nn.Dropout(0.5),
|
34 |
+
nn.Linear(6272, 3136),
|
35 |
nn.ReLU(),
|
36 |
nn.Dropout(0.4),
|
37 |
+
nn.Linear(3136, 1568),
|
38 |
nn.ReLU(),
|
39 |
nn.Dropout(0.4),
|
40 |
+
nn.Linear(1568, 784),
|
41 |
nn.ReLU(),
|
42 |
nn.Dropout(0.3),
|
43 |
+
nn.Linear(784, 392),
|
44 |
nn.ReLU(),
|
45 |
nn.Dropout(0.3),
|
46 |
+
nn.Linear(392, 196),
|
47 |
nn.ReLU(),
|
48 |
nn.Dropout(0.2),
|
49 |
+
nn.Linear(196, 98),
|
50 |
nn.ReLU(),
|
51 |
nn.Dropout(0.2),
|
52 |
+
nn.Linear(98, 49),
|
53 |
nn.ReLU(),
|
54 |
nn.Dropout(0.1),
|
55 |
+
nn.Linear(49, 1),
|
56 |
nn.Sigmoid()
|
57 |
)
|
58 |
+
|
59 |
+
# Model ağırlıklarını yükle
|
60 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
61 |
model = model.to(device)
|
|
|
62 |
model.eval()
|
63 |
return model
|
64 |
|
65 |
model = load_model()
|
66 |
|
67 |
+
# Görüntü dönüşüm pipeline'ı
|
68 |
transform = transforms.Compose([
|
69 |
transforms.Resize((224, 224)),
|
70 |
transforms.ToTensor(),
|
71 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
72 |
])
|
73 |
|
74 |
+
# Tahmin fonksiyonu
|
75 |
+
def predict(image: Image.Image):
|
76 |
+
input_tensor = transform(image).unsqueeze(0).to(device)
|
77 |
+
with torch.no_grad():
|
78 |
+
output = model(input_tensor).squeeze(0).cpu().numpy()
|
79 |
+
prediction = "Positive" if output[0] > 0.5 else "Negative"
|
80 |
+
return {"Prediction": prediction, "Probability": round(float(output[0]), 2)}
|
81 |
|
82 |
+
# Ana API rotası
|
83 |
@app.post("/predict")
|
84 |
+
async def predict_image(file: UploadFile = File(...)):
|
85 |
+
try:
|
86 |
+
# Görüntüyü oku
|
87 |
+
image_data = await file.read()
|
88 |
+
image = Image.open(io.BytesIO(image_data)).convert("RGB")
|
89 |
+
|
90 |
+
# Tahmin yap
|
91 |
+
result = predict(image)
|
92 |
+
return JSONResponse(content=result)
|
93 |
+
except Exception as e:
|
94 |
+
return JSONResponse(content={"error": str(e)}, status_code=400)
|
95 |
|
96 |
+
# Ana sayfa
|
97 |
+
@app.get("/")
|
98 |
+
def home():
|
99 |
+
return {"message": "Upload an image to /predict for classification."}
|