File size: 9,793 Bytes
b863376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
import shutil
import subprocess
import zipfile
import time
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.optim import lr_scheduler
import subprocess
import zipfile
from PIL import Image
import gradio as gr

# Step 1: Setup Kaggle API
# Ensure the .kaggle directory exists
kaggle_dir = os.path.expanduser("~/.kaggle")
if not os.path.exists(kaggle_dir):
    os.makedirs(kaggle_dir)

# Step 2: Copy the kaggle.json file to the ~/.kaggle directory
kaggle_json_path = "kaggle.json"
kaggle_dest_path = os.path.join(kaggle_dir, "kaggle.json")

if not os.path.exists(kaggle_dest_path):
    shutil.copy(kaggle_json_path, kaggle_dest_path)
    os.chmod(kaggle_dest_path, 0o600)
    print("Kaggle API key copied and permissions set.")
else:
    print("Kaggle API key already exists.")
    
# Step 3: Download the dataset from Kaggle using Kaggle CLI
dataset_name = "mostafaabla/garbage-classification"
print(f"Downloading the dataset: {dataset_name}")
download_command = f"kaggle datasets download -d {dataset_name}"

# Run the download command
subprocess.run(download_command, shell=True)

# Step 4: Unzip the downloaded dataset
dataset_zip = "garbage-classification.zip"
extracted_folder = "./garbage-classification"

# Check if the zip file exists
if os.path.exists(dataset_zip):
    if not os.path.exists(extracted_folder):
        with zipfile.ZipFile(dataset_zip, 'r') as zip_ref:
            zip_ref.extractall(extracted_folder)
            print("Dataset unzipped successfully!")
    else:
        print("Dataset already unzipped.")
else:
    print(f"Dataset zip file '{dataset_zip}' not found.")


# Path to the data directory
data_dir = 'C:\\Users\\kendr\\Downloads\\data'  # Adjust this if necessary

# Define data transformations
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomRotation(15),
        transforms.RandomHorizontalFlip(),
        transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.2),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
    'valid': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

# Create the datasets from the image folder
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
                  for x in ['train', 'valid']}

# Create the dataloaders
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=32, shuffle=True, num_workers=4)
               for x in ['train', 'valid']}

# Class names
class_names = image_datasets['train'].classes
print(f"Classes: {class_names}")

# Check if a GPU is available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load pre-trained ResNet50 model
model = models.resnet50(weights='ResNet50_Weights.DEFAULT')  # Use weights instead of pretrained

# Modify the final layer to match the number of classes
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, len(class_names))  # Output classes match

# Move the model to the GPU if available
model = model.to(device)

# Loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

# Learning rate scheduler
scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

# Number of epochs
num_epochs = 10

# Training function with detailed output for each epoch
def train_model(model, criterion, optimizer, scheduler, num_epochs=10):
    since = time.time()
    
    best_model_wts = model.state_dict()
    best_acc = 0.0

    for epoch in range(num_epochs):
        epoch_start = time.time()  # Start time for this epoch
        print(f'Epoch {epoch + 1}/{num_epochs}')
        print('-' * 10)

        # Each epoch has a training and validation phase
        for phase in ['train', 'valid']:
            if phase == 'train':
                model.train()  # Set model to training mode
            else:
                model.eval()   # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # Iterate over data
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # Zero the parameter gradients
                optimizer.zero_grad()

                # Forward
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # Backward + optimize only if in training phase
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # Statistics
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            if phase == 'train':
                scheduler.step()

            # Calculate epoch loss and accuracy
            epoch_loss = running_loss / len(image_datasets[phase])
            epoch_acc = running_corrects.double() / len(image_datasets[phase])

            # Print loss and accuracy for each phase
            print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')

            # Deep copy the model if it's the best accuracy
            if phase == 'valid' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = model.state_dict()

        epoch_end = time.time()  # End time for this epoch
        print(f'Epoch {epoch + 1} completed in {epoch_end - epoch_start:.2f} seconds.')

    time_elapsed = time.time() - since
    print(f'Training complete in {time_elapsed // 60:.0f}m {time_elapsed % 60:.0f}s')
    print(f'Best val Acc: {best_acc:.4f}')

    # Load best model weights
    model.load_state_dict(best_model_wts)
    return model

# Train the model
best_model = train_model(model, criterion, optimizer, scheduler, num_epochs=num_epochs)

# Save the model
torch.save(model.state_dict(), 'resnet50_garbage_classification.pth')

import pickle

# Manually creating the history dictionary based on the logs you provided
history = {
    'train_loss': [1.0083, 0.7347, 0.6510, 0.5762, 0.5478, 0.5223, 0.4974, 0.3464, 0.2896, 0.2604],
    'train_acc': [0.6850, 0.7687, 0.7913, 0.8126, 0.8210, 0.8272, 0.8355, 0.8870, 0.9049, 0.9136],
    'val_loss': [0.6304, 0.8616, 0.5594, 0.4006, 0.3968, 0.4051, 0.3223, 0.2221, 0.2125, 0.2076],
    'val_acc': [0.7985, 0.7307, 0.8260, 0.8655, 0.8793, 0.8729, 0.9094, 0.9338, 0.9338, 0.9326]
}

# Save the history as a pickle file
with open('training_history.pkl', 'wb') as f:
    pickle.dump(history, f)

print('Training history saved as training_history.pkl')



# Load your model
def load_model():
    model = models.resnet50(weights='DEFAULT')  # Using default weights for initialization
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 12)  # Adjust to the number of classes you have
    
    # Load the state dict without the weights_only argument
    model.load_state_dict(torch.load('resnet50_garbage_classification.pth', map_location=torch.device('cpu')))
    
    model.eval()  # Set to evaluation mode
    return model

model = load_model()

# Define image transformations
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# Class names
class_names = ['battery', 'biological', 'brown-glass', 'cardboard', 
               'clothes', 'green-glass', 'metal', 'paper', 
               'plastic', 'shoes', 'trash', 'white-glass']

# Define bin colors for each class
bin_colors = {
    'battery': 'Merah (Red)',        # Limbah berbahaya
    'biological': 'Cokelat (Brown)',  # Limbah organik
    'brown-glass': 'Hijau (Green)',   # Gelas berwarna coklat
    'cardboard': 'Kuning (Yellow)',    # Limbah daur ulang
    'clothes': 'Biru (Blue)',         # Pakaian dan tekstil
    'green-glass': 'Hijau (Green)',    # Gelas berwarna hijau
    'metal': 'Kuning (Yellow)',        # Limbah daur ulang
    'paper': 'Kuning (Yellow)',        # Limbah daur ulang
    'plastic': 'Kuning (Yellow)',      # Limbah daur ulang
    'shoes': 'Biru (Blue)',           # Pakaian dan tekstil
    'trash': 'Hitam (Black)',         # Limbah umum
    'white-glass': 'Putih (White)'    # Gelas berwarna putih
}

# Define the prediction function
def predict(image):
    image = Image.fromarray(image)  # Convert numpy array to PIL Image
    image = transform(image)  # Apply transformations
    image = image.unsqueeze(0)  # Add batch dimension
    
    with torch.no_grad():
        outputs = model(image)
        _, predicted = torch.max(outputs, 1)
    
    class_name = class_names[predicted.item()]  # Return predicted class name
    bin_color = bin_colors[class_name]  # Get the corresponding bin color
    return class_name, bin_color  # Return both class name and bin color

# Make Gradio Interface
iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="numpy", label="Unggah Gambar"),
    outputs=[
        gr.Textbox(label="Jenis Sampah"), 
        gr.Textbox(label="Tong Sampah yang Sesuai")  # 2 output with label
    ],
    title="Klasifikasi Sampah dengan ResNet50",
    description="Unggah gambar sampah, dan model akan mengklasifikasikannya ke dalam salah satu dari 12 kategori bersama dengan warna tempat sampah yang sesuai."
)


iface.launch(share=True)