File size: 6,319 Bytes
b863376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413219b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b863376
 
413219b
 
 
 
 
 
 
b863376
 
 
 
 
 
413219b
b7f2ac3
b863376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413219b
 
 
 
 
 
 
 
 
 
 
 
b863376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413219b
b863376
 
 
 
 
 
 
e4f3534
413219b
 
 
b863376
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import shutil
import subprocess
import zipfile
import time
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.optim import lr_scheduler
import subprocess
import zipfile
from PIL import Image
import gradio as gr

# Step 1: Setup Kaggle API
# Ensure the .kaggle directory exists
kaggle_dir = os.path.expanduser("~/.kaggle")
if not os.path.exists(kaggle_dir):
    os.makedirs(kaggle_dir)

# Step 2: Copy the kaggle.json file to the ~/.kaggle directory
kaggle_json_path = "kaggle.json"
kaggle_dest_path = os.path.join(kaggle_dir, "kaggle.json")

if not os.path.exists(kaggle_dest_path):
    shutil.copy(kaggle_json_path, kaggle_dest_path)
    os.chmod(kaggle_dest_path, 0o600)
    print("Kaggle API key copied and permissions set.")
else:
    print("Kaggle API key already exists.")
    
# Step 3: Download the dataset from Kaggle using Kaggle CLI
dataset_name = "mostafaabla/garbage-classification"
print(f"Downloading the dataset: {dataset_name}")
download_command = f"kaggle datasets download -d {dataset_name}"

# Run the download command
subprocess.run(download_command, shell=True)

# Step 4: Unzip the downloaded dataset
dataset_zip = "garbage-classification.zip"
extracted_folder = "./garbage-classification"

# Check if the zip file exists
if os.path.exists(dataset_zip):
    if not os.path.exists(extracted_folder):
        with zipfile.ZipFile(dataset_zip, 'r') as zip_ref:
            zip_ref.extractall(extracted_folder)
            print("Dataset unzipped successfully!")
    else:
        print("Dataset already unzipped.")
else:
    print(f"Dataset zip file '{dataset_zip}' not found.")




import pickle

# Mengupdate hasil train dan validate terbaru
history = {
    'train_loss': [
        0.9568, 0.6937, 0.5917, 0.5718, 0.5109,
        0.4824, 0.4697, 0.3318, 0.2785, 0.2680,
        0.2371, 0.2333, 0.2198, 0.2060, 0.1962,
        0.1951, 0.1880, 0.1912, 0.1811, 0.1810
    ],
    'train_acc': [
        0.7011, 0.7774, 0.8094, 0.8146, 0.8331,
        0.8452, 0.8447, 0.8899, 0.9068, 0.9114,
        0.9216, 0.9203, 0.9254, 0.9306, 0.9352,
        0.9346, 0.9368, 0.9353, 0.9396, 0.9409
    ],
    'val_loss': [
        0.4934, 0.3939, 0.4377, 0.3412, 0.2614,
        0.2966, 0.2439, 0.1065, 0.0926, 0.0797,
        0.0738, 0.0639, 0.0555, 0.0560, 0.0490,
        0.0479, 0.0455, 0.0454, 0.0438, 0.0427
    ],
    'val_acc': [
        0.8481, 0.8734, 0.8663, 0.8915, 0.9172,
        0.9011, 0.9221, 0.9649, 0.9714, 0.9759,
        0.9762, 0.9791, 0.9827, 0.9812, 0.9843,
        0.9850, 0.9852, 0.9854, 0.9854, 0.9866
    ]
}

# Simpan history sebagai file pickle
with open('training_history.pkl', 'wb') as f:
    pickle.dump(history, f)

print('Training history saved as training_history.pkl')




import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image
import gradio as gr

# Load your model
def load_model():
    model = models.resnet50(weights='DEFAULT')  # Using default weights for initialization
    num_ftrs = model.fc.in_features
    model.fc = nn.Linear(num_ftrs, 12)  # Adjust to the number of classes you have
    
    # Load the state dict
    model.load_state_dict(torch.load('resnet50_garbage_classification.pth', map_location=torch.device('cpu')))
    
    model.eval()  # Set to evaluation mode
    return model

model = load_model()

# Define image transformations
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])

# Class names
class_names = ['battery', 'biological', 'brown-glass', 'cardboard', 
               'clothes', 'green-glass', 'metal', 'paper', 
               'plastic', 'shoes', 'trash', 'white-glass']

# Define bin colors for each class
bin_colors = {
    'battery': 'Merah (Red)',                # Limbah berbahaya (B3)
    'biological': 'Hijau (Green)',           # Limbah organik
    'brown-glass': 'Kuning (Yellow or trash banks / recycling centers)',  # Gelas berwarna coklat (anorganik/daur ulang)
    'cardboard': 'Biru (Blue)',              # Kertas (daur ulang)
    'clothes': 'Kuning atau Bank Sampah (Yellow or trash banks / recycling centers)',  # Pakaian (dimasukkan sebagai daur ulang)
    'green-glass': 'Kuning (Yellow)',        # Gelas berwarna hijau (anorganik/daur ulang)
    'metal': 'Kuning (Yellow)',              # Logam (anorganik/daur ulang)
    'paper': 'Biru (Blue)',                  # Kertas (daur ulang)
    'plastic': 'Kuning (Yellow)',            # Plastik (anorganik/daur ulang)
    'shoes': 'Kuning atau Bank Sampah (Yellow or trash banks / recycling centers)',  # Sepatu (dimasukkan sebagai daur ulang)
    'trash': 'Abu-abu (Gray)',               # Limbah umum
    'white-glass': 'Kuning (Yellow or trash banks / recycling centers)'         # Gelas berwarna putih (anorganik/daur ulang)
}

# Define the prediction function
def predict(image):
    image = Image.fromarray(image)  # Convert numpy array to PIL Image
    image = transform(image)  # Apply transformations
    image = image.unsqueeze(0)  # Add batch dimension
    
    with torch.no_grad():
        outputs = model(image)
        _, predicted = torch.max(outputs, 1)
    
    class_name = class_names[predicted.item()]  # Return predicted class name
    bin_color = bin_colors[class_name]  # Get the corresponding bin color
    return class_name, bin_color  # Return both class name and bin color

# Buat antarmuka Gradio dengan deskripsi
iface = gr.Interface(
    fn=predict,
    inputs=gr.Image(type="numpy", label="Unggah Gambar"),
    outputs=[
        gr.Textbox(label="Jenis Sampah"), 
        gr.Textbox(label="Tong Sampah yang Sesuai")  # 2 output with label
    ],
    title="Klasifikasi Sampah dengan ResNet50 v1",
    description="Unggah gambar sampah, dan model kami akan mengklasifikasikannya ke dalam salah satu dari 12 kategori bersama dengan warna tempat sampah yang sesuai. "
                "<strong>Model ini bisa memprediksi jenis sampah dari ke-12 jenis berikut:</strong> Baterai, Sampah organik, Gelas Kaca Coklat, "
                "Kardus, Pakaian, Gelas Kaca Hijau, Metal, Kertas, Plastik, Sepatu/sandal, Popok/pampers, Gelas Kaca bening."
)

iface.launch(share=True)