WGAN-GP / app.py
IMvision12's picture
Update app.py
1bde683
raw
history blame
1.62 kB
from huggingface_hub import from_pretrained_keras
import matplotlib.pyplot as plt
from math import sqrt, ceil
import tensorflow as tf
import gradio as gr
import numpy as np
model = from_pretrained_keras("IMvision12/WGAN-GP")
title = "WGAN-GP"
description = "Image Generation Using WGAN"
article = """
<p style='text-align: center'>
<a href='https://keras.io/examples/generative/wgan_gp/' target='_blank'>Keras Example given by A_K_Nain</a>
<br>
Space by Gitesh Chawda
</p>
"""
def generate_latent_points(latent_dim, n_samples):
random_latent_vectors = tf.random.normal(shape=(n_samples, latent_dim))
return random_latent_vectors
def create_digit_samples(n_samples):
latent_dim = 128
random_vector_labels = generate_latent_points(latent_dim, int(n_samples))
examples = model.predict(random_vector_labels)
examples = examples * 255.0
size = ceil(sqrt(n_samples))
digit_images = np.zeros((28*size, 28*size), dtype=float)
n = 0
for i in range(size):
for j in range(size):
if n == n_samples:
break
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
n += 1
digit_images = (digit_images/127.5) -1
return digit_images
examples = [[1, 10], [3, 5], [5, 15]]
iface = gr.Interface(
fn = create_digit_samples,
inputs = ["number", "number"],
outputs = ["image"],
examples = examples,
description = description,
title = title,
article = article
)
iface.launch()