File size: 8,206 Bytes
8f570a9
 
b38c358
e128936
 
0d89801
7e66050
 
b38c358
0d89801
 
b38c358
 
 
 
0d89801
 
031c42b
83cae6c
 
 
0d89801
 
e128936
72d2b99
bf673e1
33f35f3
b38c358
bf673e1
 
 
 
 
b38c358
 
bf673e1
 
0d89801
 
8f570a9
 
72d2b99
8f570a9
 
 
 
 
 
 
 
 
 
 
bca1af7
 
8f570a9
 
 
 
d888127
 
 
 
 
 
4a619ec
fe679da
bf673e1
e128936
 
b38c358
 
e128936
 
 
 
 
 
b38c358
0d89801
722b968
0d89801
 
7e66050
0d89801
 
 
722b968
0d89801
d888127
b38c358
 
 
d888127
b38c358
 
722b968
0d89801
8f570a9
b38c358
 
 
bb81176
b38c358
 
 
 
 
 
 
 
 
 
 
 
 
bb81176
 
b38c358
bb81176
b38c358
 
 
 
 
 
 
 
 
867296e
bf673e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d89801
 
 
 
 
 
 
 
 
 
 
 
3e075bb
e128936
805962c
b38c358
805962c
 
 
b38c358
805962c
 
 
 
e128936
 
b38c358
 
 
 
 
 
 
e128936
 
 
 
 
72d2b99
e128936
 
 
 
 
 
 
 
72d2b99
 
 
e128936
 
 
72d2b99
e128936
 
 
 
72d2b99
 
e128936
 
 
 
 
0d89801
2b61647
722b968
7ea5176
 
722b968
0d89801
 
 
 
 
b38c358
 
e128936
 
 
 
0d89801
 
2b61647
 
0d89801
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
from typing import Tuple

import supervision as sv
import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image, ImageFilter
from diffusers import FluxInpaintPipeline

from utils.florence import load_florence_model, run_florence_inference, \
    FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
from utils.sam import load_sam_image_model, run_sam_inference

MARKDOWN = """
# FLUX.1 Inpainting 🔥

Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for 
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos) 
for taking it to the next level by enabling inpainting with the FLUX.
"""

MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DEVICE = torch.device("cpu")

# torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
# if torch.cuda.get_device_properties(0).major >= 8:
#     torch.backends.cuda.matmul.allow_tf32 = True
#     torch.backends.cudnn.allow_tf32 = True

FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
# FLUX_INPAINTING_PIPELINE = FluxInpaintPipeline.from_pretrained(
#     "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)


def resize_image_dimensions(
    original_resolution_wh: Tuple[int, int],
    maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
    width, height = original_resolution_wh

    if width > height:
        scaling_factor = maximum_dimension / width
    else:
        scaling_factor = maximum_dimension / height

    new_width = int(width * scaling_factor)
    new_height = int(height * scaling_factor)

    new_width = new_width - (new_width % 32)
    new_height = new_height - (new_height % 32)

    return new_width, new_height


def is_image_empty(image: Image.Image) -> bool:
    gray_img = image.convert("L")
    pixels = list(gray_img.getdata())
    return all(pixel == 0 for pixel in pixels)


@spaces.GPU()
@torch.inference_mode()
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
    input_image_editor: dict,
    inpainting_prompt_text: str,
    segmentation_prompt_text: str,
    seed_slicer: int,
    randomize_seed_checkbox: bool,
    strength_slider: float,
    num_inference_steps_slider: int,
    progress=gr.Progress(track_tqdm=True)
):
    if not inpainting_prompt_text:
        gr.Info("Please enter a text prompt.")
        return None, None

    image = input_image_editor['background']
    mask = input_image_editor['layers'][0]

    if not image:
        gr.Info("Please upload an image.")
        return None, None

    if is_image_empty(mask) and not segmentation_prompt_text:
        gr.Info("Please draw a mask or enter a segmentation prompt.")
        return None, None

    if not is_image_empty(mask) and segmentation_prompt_text:
        gr.Info("Both mask and segmentation prompt are provided. Please provide only "
                "one.")
        return None, None

    width, height = resize_image_dimensions(original_resolution_wh=image.size)
    image = image.resize((width, height), Image.LANCZOS)

    if segmentation_prompt_text:
        print('FLORENCE INFERENCE STARTED')
        _, result = run_florence_inference(
            model=FLORENCE_MODEL,
            processor=FLORENCE_PROCESSOR,
            device=DEVICE,
            image=image,
            task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
            text=segmentation_prompt_text
        )
        detections = sv.Detections.from_lmm(
            lmm=sv.LMM.FLORENCE_2,
            result=result,
            resolution_wh=image.size
        )
        print('FLORENCE INFERENCE DONE')
        print('SAM INFERENCE STARTED')
        detections = run_sam_inference(SAM_IMAGE_MODEL, image, detections)
        print('SAM INFERENCE DONE')

        if len(detections) == 0:
            gr.Info(f"{segmentation_prompt_text} prompt did not return any detections.")
            return None, None

        mask = Image.fromarray((detections.mask[0].astype(np.uint8)) * 255)

    mask = mask.resize((width, height), Image.LANCZOS)
    mask = mask.filter(ImageFilter.GaussianBlur(radius=10))

    return image, mask

    # if randomize_seed_checkbox:
    #     seed_slicer = random.randint(0, MAX_SEED)
    # generator = torch.Generator().manual_seed(seed_slicer)
    # result = FLUX_INPAINTING_PIPELINE(
    #     prompt=inpainting_prompt_text,
    #     image=image,
    #     mask_image=mask,
    #     width=width,
    #     height=height,
    #     strength=strength_slider,
    #     generator=generator,
    #     num_inference_steps=num_inference_steps_slider
    # ).images[0]
    # print('INFERENCE DONE')
    # return result, mask


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        with gr.Column():
            input_image_editor_component = gr.ImageEditor(
                label='Image',
                type='pil',
                sources=["upload", "webcam"],
                image_mode='RGB',
                layers=False,
                brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))

            with gr.Row():
                inpainting_prompt_text_component = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter inpainting prompt",
                    container=False,
                )
                submit_button_component = gr.Button(
                    value='Submit', variant='primary', scale=0)

            with gr.Accordion("Advanced Settings", open=False):
                segmentation_prompt_text_component = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter segmentation prompt",
                    container=False,
                )
                seed_slicer_component = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=42,
                )

                randomize_seed_checkbox_component = gr.Checkbox(
                    label="Randomize seed", value=True)

                with gr.Row():
                    strength_slider_component = gr.Slider(
                        label="Strength",
                        info="Indicates extent to transform the reference `image`. "
                             "Must be between 0 and 1. `image` is used as a starting "
                             "point and more noise is added the higher the `strength`.",
                        minimum=0,
                        maximum=1,
                        step=0.01,
                        value=0.85,
                    )

                    num_inference_steps_slider_component = gr.Slider(
                        label="Number of inference steps",
                        info="The number of denoising steps. More denoising steps "
                             "usually lead to a higher quality image at the",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=20,
                    )
        with gr.Column():
            output_image_component = gr.Image(
                type='pil', image_mode='RGB', label='Generated image', format="png")
            with gr.Accordion("Debug", open=False):
                output_mask_component = gr.Image(
                    type='pil', image_mode='RGB', label='Input mask', format="png")

    submit_button_component.click(
        fn=process,
        inputs=[
            input_image_editor_component,
            inpainting_prompt_text_component,
            segmentation_prompt_text_component,
            seed_slicer_component,
            randomize_seed_checkbox_component,
            strength_slider_component,
            num_inference_steps_slider_component
        ],
        outputs=[
            output_image_component,
            output_mask_component
        ]
    )

demo.launch(debug=False, show_error=True)