Spaces:
Runtime error
Runtime error
Revert "debug"
Browse filesThis reverts commit b8f226db614526024fa5dd281521dba8eaf5c511.
app.py
CHANGED
@@ -23,13 +23,18 @@ for taking it to the next level by enabling inpainting with the FLUX.
|
|
23 |
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
IMAGE_SIZE = 1024
|
|
|
26 |
DEVICE = torch.device("cpu")
|
27 |
|
|
|
|
|
|
|
|
|
|
|
28 |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
29 |
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
|
30 |
-
FLUX_INPAINTING_PIPELINE = FluxInpaintPipeline.from_pretrained(
|
31 |
-
|
32 |
-
torch_dtype=torch.bfloat16).to(torch.device("cuda"))
|
33 |
|
34 |
|
35 |
def resize_image_dimensions(
|
@@ -60,6 +65,7 @@ def is_image_empty(image: Image.Image) -> bool:
|
|
60 |
|
61 |
@spaces.GPU()
|
62 |
@torch.inference_mode()
|
|
|
63 |
def process(
|
64 |
input_image_editor: dict,
|
65 |
inpainting_prompt_text: str,
|
@@ -122,23 +128,23 @@ def process(
|
|
122 |
mask = mask.resize((width, height), Image.LANCZOS)
|
123 |
mask = mask.filter(ImageFilter.GaussianBlur(radius=10))
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
if randomize_seed_checkbox:
|
128 |
-
|
129 |
-
generator = torch.Generator().manual_seed(seed_slicer)
|
130 |
-
result = FLUX_INPAINTING_PIPELINE(
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
).images[0]
|
140 |
-
print('INFERENCE DONE')
|
141 |
-
return result, mask
|
142 |
|
143 |
|
144 |
with gr.Blocks() as demo:
|
|
|
23 |
|
24 |
MAX_SEED = np.iinfo(np.int32).max
|
25 |
IMAGE_SIZE = 1024
|
26 |
+
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
DEVICE = torch.device("cpu")
|
28 |
|
29 |
+
# torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
30 |
+
# if torch.cuda.get_device_properties(0).major >= 8:
|
31 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
32 |
+
# torch.backends.cudnn.allow_tf32 = True
|
33 |
+
|
34 |
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
35 |
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
|
36 |
+
# FLUX_INPAINTING_PIPELINE = FluxInpaintPipeline.from_pretrained(
|
37 |
+
# "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
|
|
|
38 |
|
39 |
|
40 |
def resize_image_dimensions(
|
|
|
65 |
|
66 |
@spaces.GPU()
|
67 |
@torch.inference_mode()
|
68 |
+
# @torch.autocast(device_type="cuda", dtype=torch.bfloat16)
|
69 |
def process(
|
70 |
input_image_editor: dict,
|
71 |
inpainting_prompt_text: str,
|
|
|
128 |
mask = mask.resize((width, height), Image.LANCZOS)
|
129 |
mask = mask.filter(ImageFilter.GaussianBlur(radius=10))
|
130 |
|
131 |
+
return image, mask
|
132 |
+
|
133 |
+
# if randomize_seed_checkbox:
|
134 |
+
# seed_slicer = random.randint(0, MAX_SEED)
|
135 |
+
# generator = torch.Generator().manual_seed(seed_slicer)
|
136 |
+
# result = FLUX_INPAINTING_PIPELINE(
|
137 |
+
# prompt=inpainting_prompt_text,
|
138 |
+
# image=image,
|
139 |
+
# mask_image=mask,
|
140 |
+
# width=width,
|
141 |
+
# height=height,
|
142 |
+
# strength=strength_slider,
|
143 |
+
# generator=generator,
|
144 |
+
# num_inference_steps=num_inference_steps_slider
|
145 |
+
# ).images[0]
|
146 |
+
# print('INFERENCE DONE')
|
147 |
+
# return result, mask
|
148 |
|
149 |
|
150 |
with gr.Blocks() as demo:
|