Spaces:
Runtime error
Runtime error
File size: 19,333 Bytes
0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 02cc4a8 f275585 02cc4a8 0968a79 f275585 0968a79 f275585 0968a79 32a1bcc 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 f275585 0968a79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
from functools import partial
import cv2
import random
from typing import Tuple, Optional
import gradio as gr
import numpy as np
import requests
import spaces
import torch
from PIL import Image, ImageFilter
from diffusers import FluxInpaintPipeline
from gradio_client import Client, handle_file
MARKDOWN = """
# FLUX Inpainting
Model used is FLUX.1-schnell.
"""
MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
PIPE = FluxInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
CLIENT = Client("SkalskiP/florence-sam-masking")
EXAMPLES = [
[
{
"background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
"layers": [Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2-removebg.png", stream=True).raw)],
"composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
},
"little lion",
"",
5,
5,
42,
False,
0.85,
20
],
[
{
"background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-5.jpeg", stream=True).raw),
"layers": None,
"composite": None
},
"big blue eyes",
"eyes",
10,
5,
42,
False,
0.9,
20
]
]
def calculate_image_dimensions_for_flux(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
width, height = original_resolution_wh
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
def is_mask_empty(image: Image.Image) -> bool:
gray_img = image.convert("L")
pixels = list(gray_img.getdata())
return all(pixel == 0 for pixel in pixels)
def process_mask(
mask: Image.Image,
mask_inflation: Optional[int] = None,
mask_blur: Optional[int] = None
) -> Image.Image:
"""
Inflates and blurs the white regions of a mask.
Args:
mask (Image.Image): The input mask image.
mask_inflation (Optional[int]): The number of pixels to inflate the mask by.
mask_blur (Optional[int]): The radius of the Gaussian blur to apply.
Returns:
Image.Image: The processed mask with inflated and/or blurred regions.
"""
if mask_inflation and mask_inflation > 0:
mask_array = np.array(mask)
kernel = np.ones((mask_inflation, mask_inflation), np.uint8)
mask_array = cv2.dilate(mask_array, kernel, iterations=1)
mask = Image.fromarray(mask_array)
if mask_blur and mask_blur > 0:
mask = mask.filter(ImageFilter.GaussianBlur(radius=mask_blur))
return mask
def set_client_for_session(request: gr.Request):
try:
x_ip_token = request.headers['x-ip-token']
return Client("SkalskiP/florence-sam-masking", headers={"X-IP-Token": x_ip_token})
except:
return CLIENT
@spaces.GPU(duration=50)
def run_flux(
image: Image.Image,
mask: Image.Image,
prompt: str,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
resolution_wh: Tuple[int, int],
) -> Image.Image:
print("Running FLUX...")
width, height = resolution_wh
if randomize_seed_checkbox:
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
return PIPE(
prompt=prompt,
image=image,
mask_image=mask,
width=width,
height=height,
strength=strength_slider,
generator=generator,
num_inference_steps=num_inference_steps_slider
).images[0]
def process(
client,
input_image_editor: dict,
inpainting_prompt_text: str,
masking_prompt_text: str,
mask_inflation_slider: int,
mask_blur_slider: int,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int
):
if not inpainting_prompt_text:
gr.Info("Please enter inpainting text prompt.")
return None, None
image_path = input_image_editor['background']
mask_path = input_image_editor['layers'][0]
image = Image.open(image_path)
mask = Image.open(mask_path)
if not image:
gr.Info("Please upload an image.")
return None, None
if is_mask_empty(mask) and not masking_prompt_text:
gr.Info("Please draw a mask or enter a masking prompt.")
return None, None
if not is_mask_empty(mask) and masking_prompt_text:
gr.Info("Both mask and masking prompt are provided. Please provide only one.")
return None, None
if is_mask_empty(mask):
print("Generating mask...")
mask = client.predict(
image_input=handle_file(image_path),
text_input=masking_prompt_text,
api_name="/process_image")
mask = Image.open(mask)
print("Mask generated.")
width, height = calculate_image_dimensions_for_flux(original_resolution_wh=image.size)
image = image.resize((width, height), Image.LANCZOS)
mask = mask.resize((width, height), Image.LANCZOS)
mask = process_mask(mask, mask_inflation=mask_inflation_slider, mask_blur=mask_blur_slider)
image = run_flux(
image=image,
mask=mask,
prompt=inpainting_prompt_text,
seed_slicer=seed_slicer,
randomize_seed_checkbox=randomize_seed_checkbox,
strength_slider=strength_slider,
num_inference_steps_slider=num_inference_steps_slider,
resolution_wh=(width, height)
)
return image, mask
process_example = partial(process, client=CLIENT)
with gr.Blocks() as demo:
client_component = gr.State()
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image_editor_component = gr.ImageEditor(
label='Image',
type='filepath',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
with gr.Row():
inpainting_prompt_text_component = gr.Text(
label="Inpainting prompt",
show_label=False,
max_lines=1,
placeholder="Enter text to generate inpainting",
container=False,
)
submit_button_component = gr.Button(
value='Submit', variant='primary', scale=0)
with gr.Accordion("Advanced Settings", open=False):
masking_prompt_text_component = gr.Text(
label="Masking prompt",
show_label=False,
max_lines=1,
placeholder="Enter text to generate masking",
container=False,
)
with gr.Row():
mask_inflation_slider_component = gr.Slider(
label="Mask inflation",
info="Adjusts the amount of mask edge expansion before "
"inpainting.",
minimum=0,
maximum=20,
step=1,
value=5,
)
mask_blur_slider_component = gr.Slider(
label="Mask blur",
info="Controls the intensity of the Gaussian blur applied to "
"the mask edges.",
minimum=0,
maximum=20,
step=1,
value=5,
)
seed_slicer_component = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed_checkbox_component = gr.Checkbox(
label="Randomize seed", value=True)
with gr.Row():
strength_slider_component = gr.Slider(
label="Strength",
info="Indicates extent to transform the reference `image`. "
"Must be between 0 and 1. `image` is used as a starting "
"point and more noise is added the higher the `strength`.",
minimum=0,
maximum=1,
step=0.01,
value=0.85,
)
num_inference_steps_slider_component = gr.Slider(
label="Number of inference steps",
info="The number of denoising steps. More denoising steps "
"usually lead to a higher quality image at the",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Column():
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Generated image', format="png")
with gr.Accordion("Debug", open=False):
output_mask_component = gr.Image(
type='pil', image_mode='RGB', label='Input mask', format="png")
gr.Examples(
fn=process_example,
examples=EXAMPLES,
inputs=[
input_image_editor_component,
inpainting_prompt_text_component,
masking_prompt_text_component,
mask_inflation_slider_component,
mask_blur_slider_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component
],
outputs=[
output_image_component,
output_mask_component
],
run_on_click=False
)
submit_button_component.click(
fn=process,
inputs=[
client_component,
input_image_editor_component,
inpainting_prompt_text_component,
masking_prompt_text_component,
mask_inflation_slider_component,
mask_blur_slider_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component
],
outputs=[
output_image_component,
output_mask_component
]
)
demo.load(set_client_for_session, None, client_component)
demo.launch(debug=False, show_error=True)
# from typing import Tuple
# import requests
# import random
# import numpy as np
# import gradio as gr
# import spaces
# import torch
# from PIL import Image
# from diffusers import FluxInpaintPipeline
# torch.cuda.empty_cache()
# MAX_SEED = np.iinfo(np.int32).max
# IMAGE_SIZE = 512
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
# image = image.convert("RGBA")
# data = image.getdata()
# new_data = []
# for item in data:
# avg = sum(item[:3]) / 3
# if avg < threshold:
# new_data.append((0, 0, 0, 0))
# else:
# new_data.append(item)
# image.putdata(new_data)
# return image
# # EXAMPLES = [
# # [
# # {
# # "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
# # "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2.png", stream=True).raw))],
# # "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
# # },
# # "little lion",
# # 42,
# # False,
# # 0.85,
# # 30
# # ],
# # [
# # {
# # "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
# # "layers": [remove_background(Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-3.png", stream=True).raw))],
# # "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw),
# # },
# # "tribal tattoos",
# # 42,
# # False,
# # 0.85,
# # 30
# # ]
# # ]
# pipe = FluxInpaintPipeline.from_pretrained(
# "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
# def resize_image_dimensions(
# original_resolution_wh: Tuple[int, int],
# maximum_dimension: int = IMAGE_SIZE
# ) -> Tuple[int, int]:
# width, height = original_resolution_wh
# # if width <= maximum_dimension and height <= maximum_dimension:
# # width = width - (width % 32)
# # height = height - (height % 32)
# # return width, height
# if width > height:
# scaling_factor = maximum_dimension / width
# else:
# scaling_factor = maximum_dimension / height
# new_width = int(width * scaling_factor)
# new_height = int(height * scaling_factor)
# new_width = new_width - (new_width % 32)
# new_height = new_height - (new_height % 32)
# return new_width, new_height
# @spaces.GPU(duration=100)
# def process(
# input_image_editor: dict,
# input_text: str,
# seed_slicer: int,
# randomize_seed_checkbox: bool,
# strength_slider: float,
# num_inference_steps_slider: int,
# progress=gr.Progress(track_tqdm=True)
# ):
# if not input_text:
# gr.Info("Please enter a text prompt.")
# return None, None
# image = input_image_editor['background']
# mask = input_image_editor['layers'][0]
# if not image:
# gr.Info("Please upload an image.")
# return None, None
# if not mask:
# gr.Info("Please draw a mask on the image.")
# return None, None
# width, height = resize_image_dimensions(original_resolution_wh=image.size)
# resized_image = image.resize((width, height), Image.LANCZOS)
# resized_mask = mask.resize((width, height), Image.LANCZOS)
# if randomize_seed_checkbox:
# seed_slicer = random.randint(0, MAX_SEED)
# generator = torch.Generator().manual_seed(seed_slicer)
# with torch.no_grad(), torch.autocast("cuda"):
# result = pipe(
# prompt=input_text,
# image=resized_image,
# mask_image=resized_mask,
# width=width,
# height=height,
# strength=strength_slider,
# generator=generator,
# num_inference_steps=num_inference_steps_slider
# ).images[0]
# torch.cuda.empty_cache()
# return result, resized_mask
# with gr.Blocks() as demo:
# gr.Markdown(MARKDOWN)
# with gr.Row():
# with gr.Column():
# input_image_editor_component = gr.ImageEditor(
# label='Image',
# type='pil',
# sources=["upload", "webcam"],
# image_mode='RGB',
# layers=False,
# brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
# with gr.Row():
# input_text_component = gr.Text(
# label="Prompt",
# show_label=False,
# max_lines=1,
# placeholder="Enter your prompt",
# container=False,
# )
# submit_button_component = gr.Button(
# value='Submit', variant='primary', scale=0)
# with gr.Accordion("Advanced Settings", open=False):
# seed_slicer_component = gr.Slider(
# label="Seed",
# minimum=0,
# maximum=MAX_SEED,
# step=1,
# value=42,
# )
# randomize_seed_checkbox_component = gr.Checkbox(
# label="Randomize seed", value=True)
# with gr.Row():
# strength_slider_component = gr.Slider(
# label="Strength",
# # info="Indicates extent to transform the reference `image`. "
# # "Must be between 0 and 1. `image` is used as a starting "
# # "point and more noise is added the higher the `strength`.",
# minimum=0,
# maximum=1,
# step=0.01,
# value=0.85,
# )
# num_inference_steps_slider_component = gr.Slider(
# label="Number of inference steps",
# # info="The number of denoising steps. More denoising steps "
# # "usually lead to a higher quality image at the",
# minimum=1,
# maximum=20,
# step=1,
# value=20,
# )
# with gr.Column():
# output_image_component = gr.Image(
# type='pil', image_mode='RGB', label='Generated image', format="png")
# with gr.Accordion("Debug", open=False):
# output_mask_component = gr.Image(
# type='pil', image_mode='RGB', label='Input mask', format="png")
# # with gr.Row():
# # gr.Examples(
# # fn=process,
# # examples=EXAMPLES,
# # inputs=[
# # input_image_editor_component,
# # input_text_component,
# # seed_slicer_component,
# # randomize_seed_checkbox_component,
# # strength_slider_component,
# # num_inference_steps_slider_component
# # ],
# # outputs=[
# # output_image_component,
# # output_mask_component
# # ],
# # run_on_click=True,
# # cache_examples=True
# # )
# submit_button_component.click(
# fn=process,
# inputs=[
# input_image_editor_component,
# input_text_component,
# seed_slicer_component,
# randomize_seed_checkbox_component,
# strength_slider_component,
# num_inference_steps_slider_component
# ],
# outputs=[
# output_image_component,
# output_mask_component
# ]
# )
# demo.launch(share=True) |