Spaces:
Sleeping
Sleeping
import numpy as np | |
import resampy | |
import soundfile as sf | |
from utils.spectrogram import VoicedAreaDetection | |
def load_wav(wav_path, sr=24000): | |
# wav, fs = librosa.load(wav_path, sr=sr) | |
wav, fs = sf.read(wav_path) | |
if fs != sr: | |
wav = resampy.resample(wav, fs, sr, axis=0) | |
fs = sr | |
# assert fs == sr, f"input audio sample rate must be {sr}Hz. Got {fs}" | |
peak = np.abs(wav).max() | |
if peak > 1.0: | |
wav /= peak | |
return wav, fs | |
def extract_voiced_area(wav_path, hi_freq=1000, hop_size=480, energy_thres=0.5): | |
wav, fs = load_wav(wav_path) | |
voiced_flag = VoicedAreaDetection( | |
x=wav, | |
sr=fs, | |
n_fft=2048, | |
n_shift=hop_size, | |
win_length=2048, | |
hi_freq=hi_freq, | |
energy_thres=energy_thres, | |
) | |
return voiced_flag | |
def init_weights(m, mean=0.0, std=0.01): | |
classname = m.__class__.__name__ | |
if classname.find("Conv") != -1: | |
m.weight.data.normal_(mean, std) | |
def get_padding(kernel_size, dilation=1): | |
return int((kernel_size*dilation - dilation)/2) | |
class AttrDict(dict): | |
def __init__(self, *args, **kwargs): | |
super(AttrDict, self).__init__(*args, **kwargs) | |
self.__dict__ = self |