File size: 9,097 Bytes
925d97e
 
 
 
 
 
 
4fb477f
 
925d97e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ffcc96
4fb477f
 
 
 
 
9ffcc96
4fb477f
 
 
 
 
cc3a828
 
 
 
 
 
 
 
 
 
 
9ffcc96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a87192b
46a6192
 
 
 
 
 
 
925d97e
 
 
 
a87192b
 
 
 
 
925d97e
 
3961eb2
925d97e
 
46a6192
925d97e
 
46a6192
3961eb2
925d97e
 
 
9ffcc96
4dc2207
2361d39
4dc2207
925d97e
 
 
2361d39
925d97e
 
2361d39
f21dafa
 
 
 
 
 
 
 
925d97e
330ae58
925d97e
f21dafa
925d97e
 
 
 
 
3aecab1
 
925d97e
b175d46
925d97e
 
 
 
 
 
 
2361d39
925d97e
 
 
 
 
 
 
 
 
2361d39
925d97e
 
 
 
 
 
 
 
 
 
 
 
 
e821c96
925d97e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import zipfile
import hashlib
from utils.model import model_downloader, get_model
import requests
import json
import torch
import os
import re
import urllib.request
from inference import Inference
import gradio as gr
from constants import VOICE_METHODS, BARK_VOICES, EDGE_VOICES, zips_folder, unzips_folder
from tts.conversion import tts_infer, ELEVENLABS_VOICES_RAW, ELEVENLABS_VOICES_NAMES

api_url = "https://rvc-models-api.onrender.com/uploadfile/"

if not os.path.exists(zips_folder):
      os.mkdir(zips_folder)
if not os.path.exists(unzips_folder):
  os.mkdir(unzips_folder)
           
def get_info(path):
    path = os.path.join(unzips_folder, path)
    try:
        a = torch.load(path, map_location="cpu")
        return a
    except Exception as e:
        print("*****************eeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrr*****")
        print(e)
        return {

        }
def calculate_md5(file_path):
    hash_md5 = hashlib.md5()
    with open(file_path, "rb") as f:
        for chunk in iter(lambda: f.read(4096), b""):
            hash_md5.update(chunk)
    return hash_md5.hexdigest()

def compress(modelname, files):
    file_path = os.path.join(zips_folder, f"{modelname}.zip")
    # Select the compression mode ZIP_DEFLATED for compression
    # or zipfile.ZIP_STORED to just store the file
    compression = zipfile.ZIP_DEFLATED

    # Comprueba si el archivo ZIP ya existe
    if not os.path.exists(file_path):
        # Si no existe, crea el archivo ZIP
        with zipfile.ZipFile(file_path, mode="w") as zf:
            try:
                for file in files:
                    if file:
                        # Agrega el archivo al archivo ZIP
                        zf.write(unzips_folder if ".index" in file else os.path.join(unzips_folder, file), compress_type=compression)
            except FileNotFoundError as fnf:
                print("An error occurred", fnf)
    else:
        # Si el archivo ZIP ya existe, agrega los archivos a un archivo ZIP existente
        with zipfile.ZipFile(file_path, mode="a") as zf:
            try:
                for file in files:
                    if file:
                        # Agrega el archivo al archivo ZIP
                         zf.write(unzips_folder if ".index" in file else os.path.join(unzips_folder, file), compress_type=compression)
            except FileNotFoundError as fnf:
                print("An error occurred", fnf)

    return file_path

# download the model only
def get_username(url):
    match_username = re.search(r'models/(.*?)/', url)
    if match_username:
        result = match_username.group(1)
        return result

def get_username_hf(url):
    match_username = re.search(r'huggingface.co/(.*?)/', url)
    if match_username:
        result = match_username.group(1)
        return result

pattern_zip = r"/([^/]+)\.zip$"

def get_file_name(url):
  match = re.search(pattern_zip, url)
  if match:
      extracted_string = match.group(1)
      return extracted_string
  else:
      raise Exception("没有找到AI歌手模型的zip压缩包。")

def download_online_model(url):
    url = url.strip()
    if url.startswith('https://download.openxlab.org.cn/models/'):
        zip_path = get_username(url) + "-" + get_file_name(url)
    elif url.startswith('https://huggingface.co/'):
        zip_path = get_username_hf(url) + "-" + get_file_name(url)
    else:
        zip_path = get_file_name(url)
    if not os.path.exists(zip_path + ".zip"):
      print("P.S. AI歌手模型还未下载")
      try:

          zip_name = url.split('/')[-1]

          if 'pixeldrain.com' in url:
              url = f'https://pixeldrain.com/api/file/{zip_name}'

          urllib.request.urlretrieve(url, zip_path + ".zip")

          #return f'[√] {dir_name} Model successfully downloaded!'

      except Exception as e:
          raise Exception(str(e))
    else:
      print("P.S. AI歌手模型之前已经下载")

    return zip_path + ".zip"

    
def infer(model, f0_method, audio_file, index_rate, vc_transform0, protect0, resample_sr1, filter_radius1):
    
    if not model:
        return "No model url specified, please specify a model url.", None
    
    if not audio_file:
        return "No audio file specified, please load an audio file.", None
    
    inference = Inference(
        model_name=model,
        f0_method=f0_method,
        source_audio_path=audio_file,
        feature_ratio=index_rate,
        transposition=vc_transform0,
        protection_amnt=protect0,
        resample=resample_sr1,
        harvest_median_filter=filter_radius1,
        output_file_name=os.path.join("./audio-outputs", os.path.basename(audio_file))
    )
    
    output = inference.run()
    if 'success' in output and output['success']:
        print("Inferencia realizada exitosamente...")
        return output, output['file']
    else:
        print("Fallo en la inferencia...", output)
        return output, None
    
def post_model(name, model_url, version, creator):
    modelname = model_downloader(model_url, zips_folder, unzips_folder)
    print(f"下载的模型.zip文件名:{modelname}")
    if not modelname:
        return "抱歉!无法从您提供的链接下载模型,请尝试其他链接或稍后再试。"
    
    model_files = get_model(unzips_folder, modelname)
    
    if not model_files:
        return "抱歉!无法找到模型文件,请检查链接对应的模型文件并稍后重试。"

    if not model_files.get('pth'):
        return "抱歉!无法找到.pth模型文件,请检查链接对应的模型文件并稍后重试。"
    else:
        print("已找到.pth模型文件")
      
    if not model_files.get('index'):
        return "抱歉!无法找到.index模型文件,请检查链接对应的模型文件并稍后重试。"
    else:
        print("已找到.index模型文件")
        
    md5_hash = calculate_md5(os.path.join(unzips_folder,model_files['pth']))
    zipfile = download_online_model(model_url)   #compress(modelname, list(model_files.values()))
    
    print(f"已打包模型文件:{model_files.values()}")
    a = get_info(model_files.get('pth'))
    file_to_upload = open(zipfile, "rb")
    info = a.get("info", "None"),
    sr = a.get("sr", "None"),
    f0 = a.get("f0", "None"),

    print(f"正在上传的模型:{file_to_upload}")
    data = {
        "name": name,
        "version": version,
        "creator": creator,
        "hash": md5_hash,
        "info": info,
        "sr": sr,
        "f0": f0
    }
    print("正在上传模型文件...")
    # Realizar la solicitud POST
    response = requests.post(api_url, files={"file": file_to_upload}, data=data)
    result = response.json()
    
    # Comprobar la respuesta
    if response.status_code == 200:
        result = response.json()
        return json.dumps(result, indent=4)
    else:
        print("加载模型文件时出错:", response.status_code)
        return result
        

def search_model(name):
    web_service_url = "https://script.google.com/macros/s/AKfycbyRaNxtcuN8CxUrcA_nHW6Sq9G2QJor8Z2-BJUGnQ2F_CB8klF4kQL--U2r2MhLFZ5J/exec"
    response = requests.post(web_service_url, json={
        'type': 'search_by_filename',
        'name': name
    })
    result = []
    response.raise_for_status()  # Lanza una excepción en caso de error
    json_response = response.json()
    cont = 0
    result.append("""| AI歌手名 | 模型下载链接(可直接复制到AI翻唱页面使用) | 训练步数 Epoch | 模型采样率 |
                  | ---------------- | -------------- |:------:|:-----------:|
                  """)
    yield "<br />".join(result)
    if json_response.get('ok', None):
        for model in json_response['ocurrences']:
            if cont < 20:
                model_name = str(model.get('name', 'N/A')).strip()
                model_url = model.get('url', 'N/A')
                epoch = model.get('epoch', 'N/A')
                sr = model.get('sr', 'N/A')
                line = f"""|{model_name}|<a>{model_url}</a>|{epoch}|{sr}|
                """
                result.append(line)
                yield "".join(result)
            cont += 1
            
def update_tts_methods_voice(select_value):
    if select_value == "Edge-tts":
        return gr.Dropdown.update(choices=EDGE_VOICES, visible=True, value="es-CO-GonzaloNeural-Male"), gr.Markdown.update(visible=False), gr.Textbox.update(visible=False),gr.Radio.update(visible=False)
    elif select_value == "Bark-tts":
        return gr.Dropdown.update(choices=BARK_VOICES, visible=True), gr.Markdown.update(visible=False), gr.Textbox.update(visible=False),gr.Radio.update(visible=False)
    elif select_value == 'ElevenLabs':
        return gr.Dropdown.update(choices=ELEVENLABS_VOICES_NAMES, visible=True, value="Bella"), gr.Markdown.update(visible=True), gr.Textbox.update(visible=True), gr.Radio.update(visible=False)
    elif select_value == 'CoquiTTS':
        return gr.Dropdown.update(visible=False), gr.Markdown.update(visible=False), gr.Textbox.update(visible=False), gr.Radio.update(visible=True)