TMLR_Reviewer_v2 / run_claude.py
Kevin Wu
Intial commit
5c71abd
import anthropic
import base64
import pandas as pd
import requests
import os
import numpy as np
from openai import OpenAI
import io
import tiktoken
import PyPDF2
import prompts
from typing import List, Literal
from pydantic import BaseModel
import time
import gradio as gr
ANTHROPIC_API_KEY = os.environ.get("ANTHROPIC_API_KEY")
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
def ask_claude(
query: str,
pdf_path: str = None,
use_cache: bool = False,
system: str = None,
max_tokens: int = 1024,
model: str = "claude-3-5-sonnet-20241022"
) -> str:
"""
Unified function to query Claude API with various options.
Args:
query: Question/prompt for Claude
pdf_path: Optional path to PDF file (local or URL)
use_cache: Whether to enable prompt caching
system: Optional system prompt
max_tokens: Maximum tokens in response (default 1024)
model: Claude model to use (default claude-3-5-sonnet)
Returns:
Claude's response as a string
"""
client = anthropic.Anthropic(api_key=ANTHROPIC_API_KEY)
# Handle PDF if provided
content = query
betas = []
if pdf_path:
# Get PDF content
if pdf_path.startswith(('http://', 'https://')):
response = requests.get(pdf_path)
binary_data = response.content
else:
with open(pdf_path, "rb") as pdf_file:
binary_data = pdf_file.read()
pdf_data = base64.standard_b64encode(binary_data).decode("utf-8")
content = [
{
"type": "document",
"source": {
"type": "base64",
"media_type": "application/pdf",
"data": pdf_data
}
},
{
"type": "text",
"text": query
}
]
betas.append("pdfs-2024-09-25")
# Add prompt caching if requested
if use_cache:
betas.append("prompt-caching-2024-07-31")
# Prepare API call kwargs
kwargs = {
"model": model,
"max_tokens": max_tokens,
"messages": [{"role": "user", "content": content}]
}
# Add optional parameters if provided
if system:
kwargs["system"] = system
if betas:
kwargs["betas"] = betas
message = client.beta.messages.create(**kwargs)
return message.content[0].text
class Point(BaseModel):
content: str
importance: Literal["critical", "minor"]
class Review(BaseModel):
contributions: str
strengths: List[Point]
weaknesses: List[Point]
requested_changes: List[Point]
impact_concerns: str
importance_mapping = {"critical": 2, "minor": 1}
client = OpenAI(api_key=OPENAI_API_KEY)
model_name = "gpt-4o-2024-08-06"
def format_gpt(prompt):
chat_completion = client.beta.chat.completions.parse(
messages=[
{
"role": "user",
"content": prompt,
}
],
model='gpt-4o',
response_format=Review,
)
return chat_completion.choices[0].message.parsed.model_dump()
def parse_final(parsed, max_strengths=3, max_weaknesses=5, max_requested_changes=5):
new_parsed = {}
new_parsed["contributions"] = parsed["contributions"]
new_parsed["impact_concerns"] = parsed["impact_concerns"]
new_parsed["strengths"] = "\n".join(
[f'- {point["content"]}' for point in parsed["strengths"][:max_strengths]]
)
new_parsed["weaknesses"] = "\n".join(
[f'- {point["content"]}' for point in parsed["weaknesses"][:max_weaknesses]]
)
request_changes_sorted = sorted(
parsed["requested_changes"],
key=lambda x: importance_mapping[x["importance"]],
reverse=True,
)
new_parsed["requested_changes"] = "\n".join(
[
f"- {point['content']}"
for point in request_changes_sorted[:max_requested_changes]
]
)
return new_parsed
def process(file_content, progress=gr.Progress()):
# Create a list to store log messages
log_messages = []
def log(msg):
print(msg)
log_messages.append(msg)
return "\n".join(log_messages)
if not os.path.exists("cache"):
os.makedirs("cache")
pdf_path = f"cache/{time.time()}.pdf"
with open(pdf_path, "wb") as f:
f.write(file_content)
progress(0, desc="Starting review process...")
log("Starting review process...")
all_reviews = []
for i in range(3):
progress((i + 1) / 3, desc=f"Generating review {i+1}/3")
log(f"Generating review {i+1}/3...")
all_reviews.append(ask_claude(prompts.review_prompt, pdf_path=pdf_path))
all_reviews_string = "\n\n".join([f"Review {i+1}:\n{review}" for i, review in enumerate(all_reviews)])
progress(0.4, desc="Combining reviews...")
log("Combining reviews...")
combined_review = ask_claude(prompts.combine_prompt.format(all_reviews_string=all_reviews_string,
review_format=prompts.review_format), pdf_path=pdf_path)
progress(0.6, desc="Defending paper...")
log("Defending paper...")
rebuttal = ask_claude(prompts.defend_prompt.format(combined_review=combined_review), pdf_path=pdf_path)
progress(0.8, desc="Revising review...")
log("Revising review...")
revised_review = ask_claude(prompts.revise_prompt.format(review_format=prompts.review_format, combined_review=combined_review, defended_paper=rebuttal), pdf_path=pdf_path)
log("Humanizing review...")
humanized_review = ask_claude(prompts.human_style.format(review=revised_review), pdf_path=pdf_path)
progress(0.9, desc="Formatting review...")
log("Formatting review...")
formatted_review = parse_final(format_gpt(prompts.formatting_prompt.format(review=humanized_review)))
log("Finished!")
contributions, strengths, weaknesses, requested_changes, impact_concerns = (
formatted_review["contributions"],
formatted_review["strengths"],
formatted_review["weaknesses"],
formatted_review["requested_changes"],
formatted_review["impact_concerns"],
)
contributions = f"# Contributions\n\n{contributions}"
strengths = f"# Strengths\n\n{strengths}"
weaknesses = f"# Weaknesses\n\n{weaknesses}"
requested_changes = f"# Requested Changes\n\n{requested_changes}"
impact_concerns = f"# Impact Concerns\n\n{impact_concerns}"
return (
contributions,
strengths,
weaknesses,
requested_changes,
impact_concerns,
"\n".join(log_messages), # Return the log messages
)
def gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# TMLR Reviewer")
gr.Markdown("This tool helps you generate high-quality reviews for the Transactions on Machine Learning Research (TMLR).")
with gr.Row():
# Left column
left_column = gr.Column(scale=1)
with left_column:
upload_component = gr.File(label="Upload PDF", type="binary")
submit_btn = gr.Button("Generate Review")
# Progress log moved below upload section
progress_log = gr.Textbox(label="Progress Log", interactive=False, lines=10)
# Right column for review outputs
right_column = gr.Column(scale=2)
with right_column:
output_component_contributions = gr.Markdown(label="Contributions")
output_component_strengths = gr.Markdown(label="Strengths")
output_component_weaknesses = gr.Markdown(label="Weaknesses")
output_component_requested_changes = gr.Markdown(label="Requested Changes")
output_component_impact_concerns = gr.Markdown(label="Impact Concerns")
submit_btn.click(
fn=process,
inputs=upload_component,
outputs=[
output_component_contributions,
output_component_strengths,
output_component_weaknesses,
output_component_requested_changes,
output_component_impact_concerns,
progress_log,
]
)
demo.queue()
return demo
if __name__ == "__main__":
demo = gradio_interface()
demo.launch(share=False)