Kevin Wu
Initial
6adea60
raw
history blame
9.94 kB
import glob
import json
import os
import time
import gradio as gr
from openai import OpenAI
import xml.etree.ElementTree as ET
import re
import pandas as pd
import prompts
import traceback
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
model_name = "gpt-4o-2024-08-06"
try:
demo = client.beta.assistants.create(
name="Information Extractor",
instructions="Extract information from this note.",
model=model_name,
tools=[{"type": "file_search"}],
)
except Exception as e:
print(f"Error creating assistant: {str(e)}")
raise
def parse_xml_response(xml_string: str) -> pd.DataFrame:
"""
Parse the XML response from the model and extract all fields into a dictionary,
then convert it to a pandas DataFrame with a nested index.
"""
try:
# Extract only the XML content between the first and last tags
xml_content = re.search(r'<.*?>.*</.*?>', xml_string, re.DOTALL)
if xml_content:
xml_string = xml_content.group(0)
else:
print("No valid XML content found.")
return pd.DataFrame()
root = ET.fromstring(xml_string)
result = {}
for element in root:
tag = element.tag
if tag in ['patient_name', 'date_of_birth', 'sex', 'weight', 'date_of_death']:
result[tag] = {
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
**{child.tag: child.text.strip() if child.text else None
for child in element if child.tag != 'reasoning'}
}
elif tag in ['traditional_chemo', 'other_cancer_treatments', 'other_conmeds']:
if tag not in result:
result[tag] = []
reasoning = element.find('reasoning')
for item in element:
if item.tag in ['drug', 'treatment', 'medication']:
date_element = element.find('date')
result[tag].append({
'reasoning': reasoning.text.strip() if reasoning is not None else None,
'name': item.text.strip() if item.text else None,
'date': date_element.text.strip() if date_element is not None and date_element.text else None
})
elif tag in ['surgery', 'surgery_outcome', 'metastasis_at_time_of_diagnosis']:
result[tag] = {
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
**{child.tag: child.text.strip() if child.text else None
for child in element if child.tag != 'reasoning'}
}
elif tag == 'compounding_pharmacy':
result[tag] = {
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None,
'pharmacy': element.find('pharmacy').text.strip() if element.find('pharmacy') is not None else None
}
elif tag == 'adverse_effects':
if tag not in result:
result[tag] = []
effect = {
'reasoning': element.find('reasoning').text.strip() if element.find('reasoning') is not None else None
}
for child in element:
if child.tag != 'reasoning':
effect[child.tag] = child.text.strip() if child.text else None
if effect:
result[tag].append(effect)
# Convert to nested DataFrame
df_data = {}
for key, value in result.items():
if isinstance(value, dict):
for sub_key, sub_value in value.items():
df_data[(key, '1', sub_key)] = [sub_value]
elif isinstance(value, list):
for i, item in enumerate(value):
for sub_key, sub_value in item.items():
df_data[(key, f"{i+1}", sub_key)] = [sub_value]
else:
df_data[(key, '1', '')] = [value]
# Create multi-index DataFrame
df = pd.DataFrame(df_data)
df.columns = pd.MultiIndex.from_tuples(df.columns)
return df
except ET.ParseError as e:
print(f"XML parsing error: {str(e)}")
print(f"Problematic XML content: {xml_string[:500]}...") # Print first 500 chars of XML
return pd.DataFrame()
except Exception as e:
print(f"Error in parse_xml_response: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
return pd.DataFrame()
def get_response(file_id, assistant_id):
try:
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": prompts.info_prompt,
"attachments": [
{"file_id": file_id, "tools": [{"type": "file_search"}]}
],
}
]
)
run = client.beta.threads.runs.create_and_poll(
thread_id=thread.id, assistant_id=assistant_id
)
messages = list(
client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id)
)
assert len(messages) == 1, f"Expected 1 message, got {len(messages)}"
message_content = messages[0].content[0].text
annotations = message_content.annotations
for index, annotation in enumerate(annotations):
message_content.value = message_content.value.replace(annotation.text, f"")
return message_content.value
except Exception as e:
print(f"Error in get_response: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
raise
def process(file_content):
try:
if not os.path.exists("cache"):
os.makedirs("cache")
file_name = f"cache/{time.time()}.pdf"
with open(file_name, "wb") as f:
f.write(file_content)
message_file = client.files.create(file=open(file_name, "rb"), purpose="assistants")
response = get_response(message_file.id, demo.id)
df = parse_xml_response(response)
if df.empty:
return "<p>No valid information could be extracted from the provided file.</p>"
# Transpose the DataFrame
df_transposed = df.T.reset_index()
df_transposed.columns = ['Category', 'Index', 'Field', 'Value']
df_transposed = df_transposed.sort_values(['Category', 'Index', 'Field'])
# Convert to HTML with some basic styling
html = df_transposed.to_html(index=False, classes='table table-striped table-bordered', escape=False)
# Add some custom CSS for better readability
html = f"""
<style>
.table {{
width: 100%;
max-width: 100%;
margin-bottom: 1rem;
background-color: transparent;
}}
.table td, .table th {{
padding: .75rem;
vertical-align: top;
border-top: 1px solid #dee2e6;
}}
.table thead th {{
vertical-align: bottom;
border-bottom: 2px solid #dee2e6;
}}
.table tbody + tbody {{
border-top: 2px solid #dee2e6;
}}
.table-striped tbody tr:nth-of-type(odd) {{
background-color: rgba(0,0,0,.05);
}}
</style>
{html}
"""
return html
except Exception as e:
error_message = f"An error occurred while processing the file: {str(e)}"
print(error_message)
print(f"Traceback: {traceback.format_exc()}")
return f"<p>{error_message}</p>"
def gradio_interface():
upload_component = gr.File(label="Upload PDF", type="binary")
output_component = gr.HTML(label="Extracted Information")
demo = gr.Interface(
fn=process,
inputs=upload_component,
outputs=output_component,
title="Clinical Note Information Extractor",
description="This tool extracts key information from clinical notes in PDF format.",
)
demo.queue()
demo.launch()
def run_in_terminal():
print("Clinical Note Information Extractor")
print("This tool extracts key information from clinical notes in PDF format.")
print("Enter the path to your PDF file:")
file_path = input().strip()
if not os.path.exists(file_path):
print(f"Error: File not found at {file_path}")
return
try:
with open(file_path, "rb") as file:
file_content = file.read()
result = process(file_content)
if result.startswith("<p>"):
# Error message
print(result[3:-4]) # Remove <p> tags
else:
# Save the HTML output to a file
output_file = f"output_{time.time()}.html"
with open(output_file, "w", encoding="utf-8") as f:
f.write(result)
print(f"Extraction completed. Results saved to {output_file}")
# Also print a simplified version to the console
df = pd.read_html(result)[0]
print("\nExtracted Information:")
for _, row in df.iterrows():
print(f"{row['Category']} - {row['Field']}: {row['Value']}")
except Exception as e:
print(f"An error occurred while processing the file: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
if __name__ == "__main__":
try:
gradio_interface()
# run_in_terminal()
except Exception as e:
print(f"Error launching Gradio interface: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")