Kevin Wu
updates
9d23c0f
import glob
import json
import os
import time
import gradio as gr
from openai import OpenAI
import prompts
import traceback
from io import StringIO
import pandas as pd
from typing import Dict, Any
from typing import List, Optional
from pydantic import BaseModel, Field
from structures import ClinicalInfo
client = OpenAI(api_key=os.environ.get("OPENAI_API_KEY"))
model_name = "gpt-4o-2024-08-06"
# import pdb; pdb.set_trace()
try:
demo = client.beta.assistants.create(
name="Information Extractor",
instructions="Extract information from this note and return it as a JSON object.",
model=model_name,
tools=[{"type": "file_search"}],
)
except Exception as e:
print(f"Error creating assistant: {str(e)}")
raise
def parse_response(prompt):
chat_completion = client.beta.chat.completions.parse(
messages=[
{
"role": "user",
"content": prompt,
}
],
model=model_name,
response_format=ClinicalInfo,
)
return chat_completion.choices[0].message.parsed.model_dump()
def get_response(file_id, assistant_id, max_retries=3):
for attempt in range(max_retries):
try:
thread = client.beta.threads.create(
messages=[
{
"role": "user",
"content": prompts.info_prompt,
"attachments": [
{"file_id": file_id, "tools": [{"type": "file_search"}]}
],}
]
)
# import pdb; pdb.set_trace()
run = client.beta.threads.runs.create(
thread_id=thread.id,
assistant_id=assistant_id,
instructions="Please provide your response as a valid JSON object.",
)
run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)
while run.status != "completed":
time.sleep(1)
run = client.beta.threads.runs.retrieve(thread_id=thread.id, run_id=run.id)
messages = list(
client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id)
)
assert len(messages) == 1, f"Expected 1 message, got {len(messages)}"
message_content = messages[0].content[0].text
annotations = message_content.annotations
for index, annotation in enumerate(annotations):
message_content.value = message_content.value.replace(annotation.text, f"")
return message_content.value
except Exception as e:
print(f"Error in get_response (attempt {attempt + 1}): {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
if attempt < max_retries - 1:
print(f"Retrying in 5 seconds...")
time.sleep(5)
else:
raise Exception("Max retries reached. Unable to get response from the model.")
def clinical_info_to_dataframe(clinical_info: Dict[str, Any]) -> pd.DataFrame:
"""
Convert ClinicalInfo dictionary to a DataFrame.
"""
data = []
for field, value in clinical_info.items():
if isinstance(value, dict):
for sub_field, sub_value in value.items():
data.append({
'Category': field,
'Field': sub_field,
'Value': str(sub_value)
})
elif isinstance(value, list):
for i, item in enumerate(value):
for sub_field, sub_value in item.items():
data.append({
'Category': f"{field}_{i+1}",
'Field': sub_field,
'Value': str(sub_value)
})
elif value is None:
data.append({
'Category': field,
'Field': 'value',
'Value': 'None'
})
return pd.DataFrame(data)
def process(file_content):
try:
if not os.path.exists("cache"):
os.makedirs("cache")
file_name = f"cache/{time.time()}.pdf"
with open(file_name, "wb") as f:
f.write(file_content)
message_file = client.files.create(file=open(file_name, "rb"), purpose="assistants")
response = get_response(message_file.id, demo.id) # This now includes retry logic
response_prompt = f"Please parse the following response into the correct format: {response}"
clinical_info = parse_response(response_prompt)
df = clinical_info_to_dataframe(clinical_info)
if df.empty:
return "<p>No valid information could be extracted from the provided file.</p>"
# Sort the DataFrame
df = df.sort_values(['Category', 'Field'])
# Convert to HTML with some basic styling
html = df.to_html(index=False, classes='table table-striped table-bordered', escape=False)
# Add some custom CSS for better readability
html = f"""
<style>
.table {{
width: 100%;
max-width: 100%;
margin-bottom: 1rem;
background-color: transparent;
}}
.table td, .table th {{
padding: .75rem;
vertical-align: top;
border-top: 1px solid #dee2e6;
}}
.table thead th {{
vertical-align: bottom;
border-bottom: 2px solid #dee2e6;
}}
.table tbody + tbody {{
border-top: 2px solid #dee2e6;
}}
.table-striped tbody tr:nth-of-type(odd) {{
background-color: rgba(0,0,0,.05);
}}
</style>
{html}
"""
return html
except Exception as e:
error_message = f"An error occurred while processing the file: {str(e)}"
print(error_message)
print(f"Traceback: {traceback.format_exc()}")
return f"<p>{error_message}</p>"
def gradio_interface():
upload_component = gr.File(label="Upload PDF", type="binary")
output_component = gr.HTML(label="Extracted Information")
demo = gr.Interface(
fn=process,
inputs=upload_component,
outputs=output_component,
title="Clinical Note Information Extractor",
description="This tool extracts key information from clinical notes in PDF format.",
)
demo.queue()
demo.launch()
def run_in_terminal():
print("Clinical Note Information Extractor")
print("This tool extracts key information from clinical notes in PDF format.")
file_path = "../clinicalnotes_raw/0b7wtxiunxwploe6tnnluh0l84qg.pdf"
if not os.path.exists(file_path):
print(f"Error: File not found at {file_path}")
return
try:
with open(file_path, "rb") as file:
file_content = file.read()
result = process(file_content)
if result.startswith("<p>"):
# Error message
print(result[3:-4]) # Remove <p> tags
else:
# Save the HTML output to a file
output_file = f"output_{time.time()}.html"
with open(output_file, "w", encoding="utf-8") as f:
f.write(result)
print(f"Extraction completed. Results saved to {output_file}")
# Also print a simplified version to the console
df = pd.read_html(result)[0]
print("\nExtracted Information:")
for _, row in df.iterrows():
print(f"{row['Category']} - {row['Field']}: {row['Value']}")
except Exception as e:
print(f"An error occurred while processing the file: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
if __name__ == "__main__":
try:
gradio_interface()
# run_in_terminal()
except Exception as e:
print(f"Error launching Gradio interface: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")