Spaces:
Sleeping
Sleeping
File size: 7,082 Bytes
c46a1db 84d5910 fcc6e0c c46a1db 1ac2a58 d1fa806 c20fe36 7002c36 d1fa806 fcc6e0c 2086a64 958214c 69ae2e7 1ac2a58 7e06467 69ae2e7 15e748c 1ac2a58 69ae2e7 1ac2a58 7e06467 15e748c 5946eab b66a399 d1fa806 c46a1db 1d87e6c c46a1db 84d5910 1ac2a58 84d5910 c46a1db fb059e3 1ac2a58 fb059e3 fcc6e0c 84d5910 4ceb202 3c65e4f b66a399 84d5910 b66a399 84d5910 b66a399 f6899e1 b66a399 3dd17b5 b66a399 52b1cb8 1ac2a58 4a91257 84d5910 4a91257 84d5910 15e748c 84d5910 c46a1db cfc0510 fee8800 3cb10e8 1a40aec fee8800 1ac2a58 c46a1db 1a40aec 3cb10e8 9787b16 2569c5d 9787b16 3fee0c7 b4684c8 3fee0c7 2569c5d 3fee0c7 83c6700 3fee0c7 b4684c8 9ffd967 3fee0c7 106b63b 3fee0c7 d1fa806 3fee0c7 3c65e4f d1fa806 3fee0c7 5d3db49 46c628d 9787b16 46c628d b4684c8 2569c5d b4684c8 46c628d b4684c8 a584e6d 163c158 b4684c8 7be6ab0 84d5910 c46a1db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import torch
import spaces
import gradio as gr
from threading import Thread
import re
import time
import tempfile
import os
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from sentence_transformers import SentenceTransformer
from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import WebBaseLoader
from langchain_text_splitters import SentenceTransformersTokenTextSplitter
from PIL import Image
HF_TOKEN = os.environ["Inference_Calls"]
print(HF_TOKEN)
# from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer
# processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
# model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
"""
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
token=HF_TOKEN
).to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
"""
from huggingface_hub import InferenceClient
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
client = InferenceClient(model=model_id, token="HF_TOKEN")
print("Client object created!")
embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
ASR_MODEL_NAME = "openai/whisper-large-v3"
ASR_BATCH_SIZE = 8
ASR_CHUNK_LENGTH_S = 30
TEMP_FILE_LIMIT_MB = 1024 #2048
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
device = 0 if torch.cuda.is_available() else "cpu"
asr_pl = pipeline(
task="automatic-speech-recognition",
model=ASR_MODEL_NAME,
chunk_length_s=ASR_CHUNK_LENGTH_S,
device=device,
)
application_title = "Enlight Innovations Limited -- Demo"
application_description = "This demo is designed to illustrate our basic ideas and feasibility in implementation."
@spaces.GPU
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
messages =[
{ "role": "user", "content": "What is Python Programming?" },
]
print(messages)
response = ""
for message in client.chat.completions.create( #client.chat_completion(
messages=messages,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
stream=True,
temperature=temperature,
top_p=top_p,
eos_token_id=terminators,
):
token = message.choices[0].delta.content
response += token
yield response
@spaces.GPU
def transcribe(asr_inputs, task):
#print("Type: " + str(type(asr_inputs)))
if asr_inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = asr_pl(asr_inputs, batch_size=ASR_BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text.strip()
"""Gradio User Interface"""
#audio_input = gr.Audio(sources="upload", type="filepath", label="Audio: from file") #gr.Audio(sources="microphone", type="filepath", label="Audio: from microphone")
#audio_input_choice = gr.Radio(["audio file", "microphone"], label="Audio Input Source", value="audio file") #
# (transcribe) Interface components
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input Source")
task_input_choice = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
task_output = gr.Textbox(label="Transcribed Output")
# ChatInterface components
chatbot_main = gr.Chatbot(label="Extraction Output")
chatbot_main_input = gr.MultimodalTextbox({"text": "Choose the referred material(s) and ask your question.", "files":[]})
chatbot_sys_output = gr.Textbox(value="You are a friendly Chatbot.", label="System Message")
chatbot_max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max. New Tokens")
chatbot_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
chatbot_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
)
transcribe_interface = gr.Interface(
fn=transcribe,
inputs=[
audio_input,
#audio_input_choice,
task_input_choice,
],
outputs=[
task_output, #"text",
],
title=application_title,
description=application_description,
allow_flagging="never",
)
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
chat_interface = gr.ChatInterface(
respond,
multimodal=True,
title=application_title,
description=application_description,
chatbot=chatbot_main,
textbox=chatbot_main_input,
additional_inputs=[
chatbot_sys_output,
chatbot_max_tokens,
chatbot_temperature,
chatbot_top_p,
],
)
with gr.Blocks() as demo:
gr.TabbedInterface([transcribe_interface, chat_interface], ["Step 1: Transcribe", "Step 2: Extract"])
"""
def clear_audio_input():
return None
"""
def update_task_input(task_input_choice):
if task_input_choice == "transcribe":
return gr.Textbox(label="Transcribed Output") #Audio(sources="upload", label="Audio: from file")
elif task_input_choice == "translate":
return gr.Textbox(label="Translated Output") #Audio(sources="microphone", label="Audio: from microphone")
#task_input_choice.input(fn=clear_audio_input, outputs=audio_input).then(fn=update_audio_input,
task_input_choice.input(fn=update_task_input,
inputs=task_input_choice,
outputs=task_output
)
def update_chatbot_main_input(updated_text):
return {"text": updated_text, "files":[]}
task_output.change(fn=update_chatbot_main_input,
inputs=task_output,
outputs=chatbot_main_input
)
if __name__ == "__main__":
demo.queue().launch() #demo.launch() |