File size: 6,989 Bytes
c46a1db
 
 
84d5910
fcc6e0c
 
c46a1db
 
 
 
 
 
 
1ac2a58
 
d1fa806
 
c20fe36
7002c36
d1fa806
 
fcc6e0c
 
2086a64
958214c
69ae2e7
1ac2a58
 
 
7e06467
 
69ae2e7
15e748c
1ac2a58
 
 
69ae2e7
1ac2a58
 
 
 
7e06467
 
15e748c
 
5946eab
b66a399
d1fa806
 
c46a1db
 
 
1d87e6c
c46a1db
84d5910
 
 
1ac2a58
84d5910
c46a1db
 
 
 
 
 
 
 
 
fb059e3
1ac2a58
fb059e3
fcc6e0c
84d5910
 
 
 
 
 
4ceb202
3c65e4f
 
b66a399
84d5910
b66a399
 
 
 
 
84d5910
b66a399
f6899e1
b66a399
3dd17b5
b66a399
52b1cb8
1ac2a58
 
4a91257
 
95f9dbf
84d5910
 
 
 
 
 
 
 
15e748c
84d5910
c46a1db
cfc0510
fee8800
3cb10e8
1a40aec
 
fee8800
1ac2a58
c46a1db
1a40aec
3cb10e8
9787b16
 
 
2569c5d
9787b16
3fee0c7
b4684c8
3fee0c7
2569c5d
 
 
 
 
95f9dbf
2569c5d
 
 
 
 
 
 
 
3fee0c7
 
 
 
83c6700
3fee0c7
 
b4684c8
 
9ffd967
3fee0c7
 
 
 
106b63b
 
3fee0c7
 
 
 
 
 
d1fa806
3fee0c7
 
3c65e4f
d1fa806
3fee0c7
 
 
 
 
 
 
 
 
5d3db49
46c628d
9787b16
46c628d
 
b4684c8
 
 
2569c5d
b4684c8
 
46c628d
b4684c8
 
a584e6d
 
163c158
b4684c8
7be6ab0
 
 
 
 
 
 
 
84d5910
 
c46a1db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import spaces

import gradio as gr
from threading import Thread
import re
import time
import tempfile
import os

from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

from sentence_transformers import SentenceTransformer

from langchain.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import WebBaseLoader 
from langchain_text_splitters import SentenceTransformersTokenTextSplitter

from PIL import Image

HF_TOKEN = os.environ["Inference_Calls"]
print(HF_TOKEN)

# from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration, TextIteratorStreamer
# processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
# model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
"""
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    token=HF_TOKEN
    ).to("cuda:0")
terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
"""
from huggingface_hub import InferenceClient
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
client = InferenceClient(model=model_id, token="HF_TOKEN")
print("Client object created!")
embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

ASR_MODEL_NAME = "openai/whisper-large-v3"
ASR_BATCH_SIZE = 8
ASR_CHUNK_LENGTH_S = 30
TEMP_FILE_LIMIT_MB = 1024 #2048

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

device = 0 if torch.cuda.is_available() else "cpu"

asr_pl = pipeline(
    task="automatic-speech-recognition",
    model=ASR_MODEL_NAME,
    chunk_length_s=ASR_CHUNK_LENGTH_S,
    device=device,
)

application_title = "Enlight Innovations Limited -- Demo"
application_description = "This demo is designed to illustrate our basic ideas and feasibility in implementation."

@spaces.GPU
def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    ):
    
    # messages = [{"role": "system", "content": system_message}]

    # for val in history:
    #     if val[0]:
    #         messages.append({"role": "user", "content": val[0]})
    #     if val[1]:
    #         messages.append({"role": "assistant", "content": val[1]})

    # messages.append({"role": "user", "content": message})

    messages =[
	{ "role": "user", "content": "What is Python Programming?" },
    ]
    print(messages)
    response = ""
        
    for message in client.chat.completions.create( #client.chat_completion(
        messages=messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response


@spaces.GPU
def transcribe(asr_inputs, task):
    #print("Type: " + str(type(asr_inputs)))
    if asr_inputs is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") 
        
    text = asr_pl(asr_inputs, batch_size=ASR_BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
    return text.strip()


"""Gradio User Interface"""
#audio_input = gr.Audio(sources="upload", type="filepath", label="Audio: from file") #gr.Audio(sources="microphone", type="filepath", label="Audio: from microphone")
#audio_input_choice = gr.Radio(["audio file", "microphone"], label="Audio Input Source", value="audio file") #

# (transcribe) Interface components
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input Source")
task_input_choice = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
task_output = gr.Textbox(label="Transcribed Output")

# ChatInterface components
chatbot_main = gr.Chatbot(label="Extraction Output")
chatbot_main_input = gr.MultimodalTextbox({"text": "Choose the referred material(s) and ask your question.", "files":[]})
chatbot_sys_output = gr.Textbox(value="You are a friendly Chatbot.", label="System Message")
chatbot_max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max. New Tokens")
chatbot_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature")
chatbot_top_p = gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        )

transcribe_interface = gr.Interface(
    fn=transcribe,
    inputs=[
        audio_input,
        #audio_input_choice,
        task_input_choice,
    ],
    outputs=[
        task_output, #"text",
    ],
    title=application_title,
    description=application_description,
    allow_flagging="never",
)


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""

chat_interface = gr.ChatInterface(
    respond,
    multimodal=True,
    title=application_title,
    description=application_description,
    chatbot=chatbot_main,
    textbox=chatbot_main_input,
    additional_inputs=[
        chatbot_sys_output,
        chatbot_max_tokens,
        chatbot_temperature,
        chatbot_top_p,
    ],
)

with gr.Blocks() as demo:
    gr.TabbedInterface([transcribe_interface, chat_interface], ["Step 1: Transcribe", "Step 2: Extract"])

    """
    def clear_audio_input():
        return None
    """
    def update_task_input(task_input_choice):
        if task_input_choice == "transcribe":
            return gr.Textbox(label="Transcribed Output") #Audio(sources="upload", label="Audio: from file") 
        elif task_input_choice == "translate":
            return gr.Textbox(label="Translated Output") #Audio(sources="microphone", label="Audio: from microphone")
            
    #task_input_choice.input(fn=clear_audio_input, outputs=audio_input).then(fn=update_audio_input, 
    task_input_choice.input(fn=update_task_input, 
                            inputs=task_input_choice, 
                            outputs=task_output
                            )

    def update_chatbot_main_input(updated_text):
        return {"text": updated_text, "files":[]}
    
    task_output.change(fn=update_chatbot_main_input, 
                       inputs=task_output,
                       outputs=chatbot_main_input
                      )


if __name__ == "__main__":
    demo.queue().launch() #demo.launch()