File size: 6,885 Bytes
f04732f
a3db70a
c36d5bb
92e7e3a
 
 
 
 
 
 
 
 
 
a3db70a
 
 
 
 
f04732f
08bc998
a3db70a
 
88b9346
a3db70a
92e7e3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c36d5bb
a3db70a
 
92e7e3a
 
 
 
 
a3db70a
92e7e3a
 
 
 
 
a3db70a
4be8019
92e7e3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3db70a
92e7e3a
a3db70a
d227c5a
9f876d1
a3db70a
3ed4913
6155e84
f60e84a
35869cc
 
 
 
 
 
 
 
 
 
 
f60e84a
57a1e05
7eb2d5b
e1b36d7
 
 
 
 
 
 
6155e84
 
73ec4ab
 
 
35869cc
73ec4ab
 
 
 
 
d869a8b
73ec4ab
6e20834
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria
import gradio as gr
import spaces
import torch
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

from threading import Thread
import re
import time 
from PIL import Image
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

torch.set_default_device('cuda')


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

model = AutoModel.from_pretrained(
    "5CD-AI/Viet-InternVL2-1B",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Viet-InternVL2-1B", trust_remote_code=True, use_fast=False)


@spaces.GPU
def chat(message, history):
    print(history)
    print(message)
    if len(history) == 0 or len(message["files"]) != 0:
        test_image = message["files"][0]["path"]
    else:
        test_image = history[0][0][0]
        
    pixel_values = load_image(test_image, max_num=12).to(torch.bfloat16).cuda()
    generation_config = dict(max_new_tokens= 1024, do_sample=True, num_beams = 3, repetition_penalty=2.5)
    
    
    
    if len(history) == 0:
        question = '<image>\n'+message["text"]
        response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
    else:
        conv_history = []
        for chat_pair in history:
            if chat_pair[1] is not None:
                if len(conv_history) == 0 and len(message["files"]) == 0:
                    chat_pair[0] = '<image>\n' + chat_pair[0]
                conv_history.append(tuple(chat_pair))
        print(conv_history)
        if len(message["files"]) != 0:
            question = '<image>\n'+message["text"]
        else:
            question = message["text"]
        response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True)
        
    print(f'User: {question}\nAssistant: {response}')

    buffer = ""
    for new_text in response:
      buffer += new_text
      generated_text_without_prompt = buffer[:]
      time.sleep(0.01)
      yield generated_text_without_prompt

CSS ="""

# @media only screen and (max-width: 600px){
#     #component-3 {
#       height: 90dvh !important;
#       transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
#       border-style: solid;
#       overflow: hidden;
#       flex-grow: 1;
#       min-width: min(160px, 100%);
#       border-width: var(--block-border-width);
#     }
# }

#component-3 {
  height: 50dvh !important;
  transform-origin: top; /* Đảm bảo rằng phần tử mở rộng từ trên xuống */
  border-style: solid;
  overflow: hidden;
  flex-grow: 1;
  min-width: min(160px, 100%);
  border-width: var(--block-border-width);
}
"""


demo = gr.ChatInterface(
    fn=chat,
    description="""Try [Vintern-1B](https://huggingface.co/5CD-AI/Viet-InternVL2-1B) in this demo. Vintern-1B consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct).""",
    examples=[{"text": "Mô tả hình ảnh.", "files":["./demo_3.jpg"]},
              {"text": "Trích xuất các thông tin từ ảnh.", "files":["./demo_1.jpg"]}, 
              {"text": "Mô tả hình ảnh một cách chi tiết.", "files":["./demo_2.jpg"]}],
    title="❄️ Vintern-1B ❄️",
    multimodal=True,
    css=CSS
)
demo.queue().launch()