Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from threading import Thread | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import spaces | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
tokenizer = AutoTokenizer.from_pretrained( | |
'qnguyen3/nanoLLaVA', | |
trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
'qnguyen3/nanoLLaVA', | |
torch_dtype=torch.float16, | |
device_map='auto', | |
trust_remote_code=True) | |
model.to("cuda:0") | |
def bot_streaming(message, history): | |
chat_history = [] | |
if message["files"]: | |
image = message["files"][-1]["path"] | |
else: | |
for i, hist in enumerate(history): | |
if type(hist[0])==tuple: | |
image = hist[0][0] | |
image_turn = i | |
if len(history) > 0 and image is not None: | |
chat_history.append({"role": "user", "content": f'<image>\n{history[1][0]}'}) | |
chat_history.append({"role": "assistant", "content": history[1][1] }) | |
for human, assistant in history[2:]: | |
chat_history.append({"role": "user", "content": human }) | |
chat_history.append({"role": "assistant", "content": assistant }) | |
chat_history.append({"role": "user", "content": message['text']}) | |
elif len(history) > 0 and image is None: | |
for human, assistant in history: | |
chat_history.append({"role": "user", "content": human }) | |
chat_history.append({"role": "assistant", "content": assistant }) | |
chat_history.append({"role": "user", "content": message['text']}) | |
elif len(history) == 0 and image is not None: | |
chat_history.append({"role": "user", "content": f"<image>\n{message['text']}"}) | |
elif len(history) == 0 and image is None: | |
chat_history.append({"role": "user", "content": message['text'] }) | |
# if image is None: | |
# gr.Error("You need to upload an image for LLaVA to work.") | |
prompt=f"[INST] <image>\n{message['text']} [/INST]" | |
image = Image.open(image).convert("RGB") | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True) | |
text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('<image>')] | |
input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0) | |
streamer = TextIteratorStreamer(input_ids, **{"skip_special_tokens": True}) | |
image = Image.open(image) | |
image_tensor = model.process_images([image], model.config).to(dtype=model.dtype) | |
generation_kwargs = dict(inputs, images=image_tensor, streamer=streamer, max_new_tokens=100) | |
generated_text = "" | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
text_prompt =f"<|im_start|>user\n{message['text']}<|im_end|>" | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
generated_text_without_prompt = buffer[len(text_prompt):] | |
time.sleep(0.04) | |
yield generated_text_without_prompt | |
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA NeXT", examples=[{"text": "What is on the flower?", "files":["./bee.jpg"]}, | |
{"text": "How to make this pastry?", "files":["./baklava.png"]}], | |
description="Try [LLaVA NeXT](https://huggingface.co/docs/transformers/main/en/model_doc/llava_next) in this demo (more specifically, the [Mistral-7B variant](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf)). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.", | |
stop_btn="Stop Generation", multimodal=True) | |
demo.launch(debug=True) |