Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,104 +1,9 @@
|
|
1 |
-
from fastapi import FastAPI, HTTPException
|
2 |
-
from pydantic import BaseModel
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
-
import torch
|
5 |
-
from huggingface_hub import snapshot_download
|
6 |
-
from safetensors.torch import load_file
|
7 |
-
|
8 |
-
class ModelInput(BaseModel):
|
9 |
-
prompt: str
|
10 |
-
max_new_tokens: int = 50
|
11 |
-
|
12 |
-
app = FastAPI()
|
13 |
-
|
14 |
-
# Define model paths
|
15 |
-
base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
16 |
-
adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
17 |
-
|
18 |
-
try:
|
19 |
-
# First load the base model
|
20 |
-
print("Loading base model...")
|
21 |
-
model = AutoModelForCausalLM.from_pretrained(
|
22 |
-
base_model_path,
|
23 |
-
torch_dtype=torch.float16,
|
24 |
-
trust_remote_code=True,
|
25 |
-
device_map="auto"
|
26 |
-
)
|
27 |
-
|
28 |
-
# Load tokenizer from base model
|
29 |
-
print("Loading tokenizer...")
|
30 |
-
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
31 |
-
|
32 |
-
# Download adapter weights
|
33 |
-
print("Downloading adapter weights...")
|
34 |
-
adapter_path_local = snapshot_download(adapter_path)
|
35 |
-
|
36 |
-
# Load the safetensors file
|
37 |
-
print("Loading adapter weights...")
|
38 |
-
state_dict = load_file(f"{adapter_path_local}/adapter_model.safetensors")
|
39 |
-
|
40 |
-
# Load state dict into model
|
41 |
-
model.load_state_dict(state_dict, strict=False)
|
42 |
-
|
43 |
-
print("Model and adapter loaded successfully!")
|
44 |
-
|
45 |
-
except Exception as e:
|
46 |
-
print(f"Error during model loading: {e}")
|
47 |
-
raise
|
48 |
-
|
49 |
-
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
50 |
-
"""Generate a response from the model based on an instruction."""
|
51 |
-
try:
|
52 |
-
messages = [{"role": "user", "content": instruction}]
|
53 |
-
input_text = tokenizer.apply_chat_template(
|
54 |
-
messages, tokenize=False, add_generation_prompt=True
|
55 |
-
)
|
56 |
-
|
57 |
-
inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
58 |
-
outputs = model.generate(
|
59 |
-
inputs,
|
60 |
-
max_new_tokens=max_new_tokens,
|
61 |
-
temperature=0.2,
|
62 |
-
top_p=0.9,
|
63 |
-
do_sample=True,
|
64 |
-
)
|
65 |
-
|
66 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
67 |
-
return response
|
68 |
-
|
69 |
-
except Exception as e:
|
70 |
-
raise ValueError(f"Error generating response: {e}")
|
71 |
-
|
72 |
-
@app.post("/generate")
|
73 |
-
async def generate_text(input: ModelInput):
|
74 |
-
try:
|
75 |
-
response = generate_response(
|
76 |
-
model=model,
|
77 |
-
tokenizer=tokenizer,
|
78 |
-
instruction=input.prompt,
|
79 |
-
max_new_tokens=input.max_new_tokens
|
80 |
-
)
|
81 |
-
return {"generated_text": response}
|
82 |
-
|
83 |
-
except Exception as e:
|
84 |
-
raise HTTPException(status_code=500, detail=str(e))
|
85 |
-
|
86 |
-
@app.get("/")
|
87 |
-
async def root():
|
88 |
-
return {"message": "Welcome to the Model API!"}
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
# //////////////////////////////////////////
|
96 |
-
|
97 |
# from fastapi import FastAPI, HTTPException
|
98 |
# from pydantic import BaseModel
|
99 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
100 |
# import torch
|
101 |
# from huggingface_hub import snapshot_download
|
|
|
102 |
|
103 |
# class ModelInput(BaseModel):
|
104 |
# prompt: str
|
@@ -119,22 +24,22 @@ async def root():
|
|
119 |
# trust_remote_code=True,
|
120 |
# device_map="auto"
|
121 |
# )
|
122 |
-
|
123 |
# # Load tokenizer from base model
|
124 |
# print("Loading tokenizer...")
|
125 |
# tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
126 |
-
|
127 |
# # Download adapter weights
|
128 |
# print("Downloading adapter weights...")
|
129 |
# adapter_path_local = snapshot_download(adapter_path)
|
130 |
-
|
131 |
-
# # Load the
|
132 |
-
# print("Loading adapter
|
133 |
-
#
|
134 |
-
|
135 |
-
# #
|
136 |
-
# model =
|
137 |
-
|
138 |
# print("Model and adapter loaded successfully!")
|
139 |
|
140 |
# except Exception as e:
|
@@ -148,7 +53,7 @@ async def root():
|
|
148 |
# input_text = tokenizer.apply_chat_template(
|
149 |
# messages, tokenize=False, add_generation_prompt=True
|
150 |
# )
|
151 |
-
|
152 |
# inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
153 |
# outputs = model.generate(
|
154 |
# inputs,
|
@@ -157,10 +62,10 @@ async def root():
|
|
157 |
# top_p=0.9,
|
158 |
# do_sample=True,
|
159 |
# )
|
160 |
-
|
161 |
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
162 |
# return response
|
163 |
-
|
164 |
# except Exception as e:
|
165 |
# raise ValueError(f"Error generating response: {e}")
|
166 |
|
@@ -174,10 +79,108 @@ async def root():
|
|
174 |
# max_new_tokens=input.max_new_tokens
|
175 |
# )
|
176 |
# return {"generated_text": response}
|
177 |
-
|
178 |
# except Exception as e:
|
179 |
# raise HTTPException(status_code=500, detail=str(e))
|
180 |
|
181 |
# @app.get("/")
|
182 |
# async def root():
|
183 |
# return {"message": "Welcome to the Model API!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# from fastapi import FastAPI, HTTPException
|
2 |
# from pydantic import BaseModel
|
3 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
# import torch
|
5 |
# from huggingface_hub import snapshot_download
|
6 |
+
# from safetensors.torch import load_file
|
7 |
|
8 |
# class ModelInput(BaseModel):
|
9 |
# prompt: str
|
|
|
24 |
# trust_remote_code=True,
|
25 |
# device_map="auto"
|
26 |
# )
|
27 |
+
|
28 |
# # Load tokenizer from base model
|
29 |
# print("Loading tokenizer...")
|
30 |
# tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
31 |
+
|
32 |
# # Download adapter weights
|
33 |
# print("Downloading adapter weights...")
|
34 |
# adapter_path_local = snapshot_download(adapter_path)
|
35 |
+
|
36 |
+
# # Load the safetensors file
|
37 |
+
# print("Loading adapter weights...")
|
38 |
+
# state_dict = load_file(f"{adapter_path_local}/adapter_model.safetensors")
|
39 |
+
|
40 |
+
# # Load state dict into model
|
41 |
+
# model.load_state_dict(state_dict, strict=False)
|
42 |
+
|
43 |
# print("Model and adapter loaded successfully!")
|
44 |
|
45 |
# except Exception as e:
|
|
|
53 |
# input_text = tokenizer.apply_chat_template(
|
54 |
# messages, tokenize=False, add_generation_prompt=True
|
55 |
# )
|
56 |
+
|
57 |
# inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
58 |
# outputs = model.generate(
|
59 |
# inputs,
|
|
|
62 |
# top_p=0.9,
|
63 |
# do_sample=True,
|
64 |
# )
|
65 |
+
|
66 |
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
67 |
# return response
|
68 |
+
|
69 |
# except Exception as e:
|
70 |
# raise ValueError(f"Error generating response: {e}")
|
71 |
|
|
|
79 |
# max_new_tokens=input.max_new_tokens
|
80 |
# )
|
81 |
# return {"generated_text": response}
|
82 |
+
|
83 |
# except Exception as e:
|
84 |
# raise HTTPException(status_code=500, detail=str(e))
|
85 |
|
86 |
# @app.get("/")
|
87 |
# async def root():
|
88 |
# return {"message": "Welcome to the Model API!"}
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
# //////////////////////////////////////////
|
96 |
+
|
97 |
+
from fastapi import FastAPI, HTTPException
|
98 |
+
from pydantic import BaseModel
|
99 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
100 |
+
import torch
|
101 |
+
from huggingface_hub import snapshot_download
|
102 |
+
from safetensors.torch import load_file
|
103 |
+
|
104 |
+
class ModelInput(BaseModel):
|
105 |
+
prompt: str
|
106 |
+
max_new_tokens: int = 50
|
107 |
+
|
108 |
+
app = FastAPI()
|
109 |
+
|
110 |
+
# Define model paths
|
111 |
+
base_model_path = "HuggingFaceTB/SmolLM2-135M-Instruct"
|
112 |
+
adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
113 |
+
|
114 |
+
try:
|
115 |
+
# Load the base model
|
116 |
+
print("Loading base model...")
|
117 |
+
model = AutoModelForCausalLM.from_pretrained(
|
118 |
+
base_model_path,
|
119 |
+
torch_dtype=torch.float16,
|
120 |
+
trust_remote_code=True,
|
121 |
+
device_map="auto"
|
122 |
+
)
|
123 |
+
|
124 |
+
# Load tokenizer
|
125 |
+
print("Loading tokenizer...")
|
126 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
127 |
+
|
128 |
+
# Download adapter weights
|
129 |
+
print("Downloading adapter weights...")
|
130 |
+
adapter_path_local = snapshot_download(repo_id=adapter_path)
|
131 |
+
|
132 |
+
# Load the safetensors file
|
133 |
+
print("Loading adapter weights...")
|
134 |
+
adapter_file = f"{adapter_path_local}/adapter_model.safetensors"
|
135 |
+
state_dict = load_file(adapter_file)
|
136 |
+
|
137 |
+
# Load state dict into model
|
138 |
+
print("Applying adapter weights...")
|
139 |
+
model.load_state_dict(state_dict, strict=False)
|
140 |
+
|
141 |
+
print("Model and adapter loaded successfully!")
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
print(f"Error during model loading: {e}")
|
145 |
+
raise
|
146 |
+
|
147 |
+
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
148 |
+
"""Generate a response from the model based on an instruction."""
|
149 |
+
try:
|
150 |
+
# Format input for the model
|
151 |
+
inputs = tokenizer.encode(instruction, return_tensors="pt").to(model.device)
|
152 |
+
|
153 |
+
# Generate response
|
154 |
+
outputs = model.generate(
|
155 |
+
inputs,
|
156 |
+
max_new_tokens=max_new_tokens,
|
157 |
+
temperature=0.7,
|
158 |
+
top_p=0.9,
|
159 |
+
do_sample=True,
|
160 |
+
)
|
161 |
+
|
162 |
+
# Decode and return the output
|
163 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
164 |
+
return response
|
165 |
+
|
166 |
+
except Exception as e:
|
167 |
+
raise ValueError(f"Error generating response: {e}")
|
168 |
+
|
169 |
+
@app.post("/generate")
|
170 |
+
async def generate_text(input: ModelInput):
|
171 |
+
try:
|
172 |
+
response = generate_response(
|
173 |
+
model=model,
|
174 |
+
tokenizer=tokenizer,
|
175 |
+
instruction=input.prompt,
|
176 |
+
max_new_tokens=input.max_new_tokens
|
177 |
+
)
|
178 |
+
return {"generated_text": response}
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
raise HTTPException(status_code=500, detail=str(e))
|
182 |
+
|
183 |
+
@app.get("/")
|
184 |
+
async def root():
|
185 |
+
return {"message": "Welcome to the Model API!"}
|
186 |
+
|