Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ from pydantic import BaseModel
|
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
5 |
from peft import PeftModel
|
6 |
-
|
7 |
import os
|
8 |
from huggingface_hub import login
|
9 |
|
@@ -14,35 +13,44 @@ HF_TOKEN = os.getenv("HF_TOKEN")
|
|
14 |
if HF_TOKEN:
|
15 |
login(token=HF_TOKEN)
|
16 |
|
17 |
-
|
18 |
# β
Initialize FastAPI
|
19 |
app = FastAPI()
|
20 |
|
21 |
-
# β
Define Base Model & LoRA Adapter Repository
|
22 |
-
base_model_name = "mistralai/Mistral-7B-v0.
|
23 |
lora_repo_id = "khushi1234455687/fine-tuned-medical-qa-V8"
|
24 |
|
|
|
|
|
|
|
25 |
# β
Load Tokenizer
|
26 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
27 |
|
28 |
# β
Configure 4-bit Quantization
|
29 |
quantization_config = BitsAndBytesConfig(
|
30 |
-
load_in_4bit=True
|
31 |
-
llm_int8_enable_fp32_cpu_offload=True,
|
32 |
-
offload_buffers=True
|
33 |
)
|
34 |
|
35 |
-
# β
Load Base Model
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
# β
Load LoRA Adapter
|
44 |
-
|
45 |
-
model.
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
print("β
Model is loaded and API is ready!")
|
48 |
|
@@ -53,10 +61,17 @@ class QueryRequest(BaseModel):
|
|
53 |
@app.post("/generate")
|
54 |
async def generate_answer(request: QueryRequest):
|
55 |
"""Generate an answer for a given medical question."""
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
61 |
return {"question": request.question, "answer": answer}
|
62 |
|
|
|
|
|
|
|
|
|
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
5 |
from peft import PeftModel
|
|
|
6 |
import os
|
7 |
from huggingface_hub import login
|
8 |
|
|
|
13 |
if HF_TOKEN:
|
14 |
login(token=HF_TOKEN)
|
15 |
|
|
|
16 |
# β
Initialize FastAPI
|
17 |
app = FastAPI()
|
18 |
|
19 |
+
# β
Define Base Model & LoRA Adapter Repository (Smaller Model for Hugging Face Spaces)
|
20 |
+
base_model_name = "mistralai/Mistral-7B-Instruct-v0.2" # πΉ Using a smaller model
|
21 |
lora_repo_id = "khushi1234455687/fine-tuned-medical-qa-V8"
|
22 |
|
23 |
+
# β
Automatically Select CPU (Hugging Face Spaces Does NOT Support GPU)
|
24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
+
|
26 |
# β
Load Tokenizer
|
27 |
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
|
28 |
|
29 |
# β
Configure 4-bit Quantization
|
30 |
quantization_config = BitsAndBytesConfig(
|
31 |
+
load_in_4bit=True
|
|
|
|
|
32 |
)
|
33 |
|
34 |
+
# β
Load Base Model (Optimized for CPU)
|
35 |
+
try:
|
36 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
37 |
+
base_model_name,
|
38 |
+
quantization_config=quantization_config,
|
39 |
+
device_map="auto", # β
Automatically assigns layers to CPU
|
40 |
+
torch_dtype=torch.float16
|
41 |
+
)
|
42 |
+
except Exception as e:
|
43 |
+
print(f"β Error loading base model: {e}")
|
44 |
+
raise e
|
45 |
|
46 |
# β
Load LoRA Adapter
|
47 |
+
try:
|
48 |
+
model = PeftModel.from_pretrained(base_model, lora_repo_id)
|
49 |
+
model.to(device) # β
Ensure model is on the correct device
|
50 |
+
model.eval()
|
51 |
+
except Exception as e:
|
52 |
+
print(f"β Error loading LoRA adapter: {e}")
|
53 |
+
raise e
|
54 |
|
55 |
print("β
Model is loaded and API is ready!")
|
56 |
|
|
|
61 |
@app.post("/generate")
|
62 |
async def generate_answer(request: QueryRequest):
|
63 |
"""Generate an answer for a given medical question."""
|
64 |
+
try:
|
65 |
+
inputs = tokenizer(request.question, return_tensors="pt").to(device) # β
Move to device
|
66 |
+
with torch.no_grad():
|
67 |
+
output = model.generate(**inputs, max_length=256)
|
68 |
+
answer = tokenizer.decode(output[0], skip_special_tokens=True)
|
69 |
+
except Exception as e:
|
70 |
+
return {"error": str(e)}
|
71 |
+
|
72 |
return {"question": request.question, "answer": answer}
|
73 |
|
74 |
+
# β
Health Check Endpoint
|
75 |
+
@app.get("/health")
|
76 |
+
async def health_check():
|
77 |
+
return {"status": "running", "device": device}
|