Update app.py
Browse files
app.py
CHANGED
@@ -6,51 +6,43 @@ import plotly.express as px
|
|
6 |
import scipy.optimize as sco
|
7 |
from datetime import datetime, timedelta
|
8 |
import random
|
9 |
-
import
|
10 |
import time
|
11 |
|
12 |
def fetch_stock_data(tickers):
|
13 |
-
"""Fetch real stock data using
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
"
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
# Convert the time series data to DataFrame
|
35 |
-
df = pd.DataFrame.from_dict(data["Time Series (Daily)"], orient="index")
|
36 |
-
df = df.astype(float)
|
37 |
-
all_data[ticker] = df["4. close"].iloc[:252] # Get last year of data
|
38 |
-
print(f"Successfully fetched data for {ticker}")
|
39 |
-
else:
|
40 |
-
print(f"No data found for {ticker}")
|
41 |
-
|
42 |
-
except Exception as e:
|
43 |
-
print(f"Error fetching {ticker}: {str(e)}")
|
44 |
-
continue
|
45 |
-
|
46 |
-
if not all_data:
|
47 |
-
print("No data received, using backup data")
|
48 |
-
return generate_sample_data(tickers)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
return df
|
54 |
|
55 |
def generate_sample_data(tickers):
|
56 |
"""Generate sample data as backup"""
|
@@ -66,13 +58,18 @@ def generate_sample_data(tickers):
|
|
66 |
|
67 |
return pd.DataFrame(data, index=dates)
|
68 |
|
69 |
-
#
|
70 |
SP500_TICKERS = [
|
71 |
'AAPL', # Apple
|
72 |
'MSFT', # Microsoft
|
73 |
-
'
|
74 |
'AMZN', # Amazon
|
75 |
-
'TSLA'
|
|
|
|
|
|
|
|
|
|
|
76 |
]
|
77 |
|
78 |
def calculate_portfolio_metrics(weights, returns):
|
@@ -106,8 +103,8 @@ def simulate_investment(weights, mu, years, initial_investment=10000):
|
|
106 |
|
107 |
def output_results(risk_level):
|
108 |
try:
|
109 |
-
# Select random tickers
|
110 |
-
selected_tickers = random.sample(SP500_TICKERS, min(len(SP500_TICKERS),
|
111 |
|
112 |
# Fetch real stock data
|
113 |
stocks_df = fetch_stock_data(selected_tickers)
|
@@ -226,4 +223,3 @@ with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
226 |
)
|
227 |
|
228 |
if __name__ == "__main__":
|
229 |
-
app.launch()
|
|
|
6 |
import scipy.optimize as sco
|
7 |
from datetime import datetime, timedelta
|
8 |
import random
|
9 |
+
import yfinance as yf
|
10 |
import time
|
11 |
|
12 |
def fetch_stock_data(tickers):
|
13 |
+
"""Fetch real stock data using yfinance with better error handling"""
|
14 |
+
try:
|
15 |
+
# Download data for all tickers at once
|
16 |
+
data = yf.download(
|
17 |
+
tickers,
|
18 |
+
start=(datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d'),
|
19 |
+
end=datetime.now().strftime('%Y-%m-%d'),
|
20 |
+
group_by='ticker',
|
21 |
+
auto_adjust=True
|
22 |
+
)
|
23 |
+
|
24 |
+
# If only one ticker is passed, the data format is different
|
25 |
+
if len(tickers) == 1:
|
26 |
+
if data.empty:
|
27 |
+
print(f"No data received for {tickers[0]}")
|
28 |
+
return generate_sample_data(tickers)
|
29 |
+
return pd.DataFrame(data['Close'])
|
30 |
|
31 |
+
# For multiple tickers, extract just the Close prices
|
32 |
+
close_prices = pd.DataFrame()
|
33 |
+
for ticker in tickers:
|
34 |
+
if (ticker, 'Close') in data.columns:
|
35 |
+
close_prices[ticker] = data[ticker]['Close']
|
36 |
+
|
37 |
+
if close_prices.empty:
|
38 |
+
print("No data received for any ticker")
|
39 |
+
return generate_sample_data(tickers)
|
40 |
|
41 |
+
return close_prices
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error fetching data: {str(e)}")
|
45 |
+
return generate_sample_data(tickers)
|
|
|
46 |
|
47 |
def generate_sample_data(tickers):
|
48 |
"""Generate sample data as backup"""
|
|
|
58 |
|
59 |
return pd.DataFrame(data, index=dates)
|
60 |
|
61 |
+
# Predefined S&P 500 Stock List (Sample tickers)
|
62 |
SP500_TICKERS = [
|
63 |
'AAPL', # Apple
|
64 |
'MSFT', # Microsoft
|
65 |
+
'GOOG', # Google
|
66 |
'AMZN', # Amazon
|
67 |
+
'TSLA', # Tesla
|
68 |
+
'NVDA', # NVIDIA
|
69 |
+
'META', # Meta
|
70 |
+
'BRK-B', # Berkshire Hathaway
|
71 |
+
'JPM', # JPMorgan Chase
|
72 |
+
'V' # Visa
|
73 |
]
|
74 |
|
75 |
def calculate_portfolio_metrics(weights, returns):
|
|
|
103 |
|
104 |
def output_results(risk_level):
|
105 |
try:
|
106 |
+
# Select random tickers
|
107 |
+
selected_tickers = random.sample(SP500_TICKERS, min(len(SP500_TICKERS), 5))
|
108 |
|
109 |
# Fetch real stock data
|
110 |
stocks_df = fetch_stock_data(selected_tickers)
|
|
|
223 |
)
|
224 |
|
225 |
if __name__ == "__main__":
|
|